Abstract
|
The attack technique targeting end-users through phishing URLs is very dangerous nowadays. With this technique, attackers could steal user data or take control of the system, etc. Therefore, early detecting phishing URLs is essential. In this paper, we propose a method to detect phishing URLs based on supervised learning algorithms and abnormal behaviors from URLs. Finally, based on the research results, we build a framework for detecting phishing URLs through end-users. The novelty and advantage of our proposed method are that abnormal behaviors are extracted based on URLs which are monitored and collected directly from attack campaigns instead of using inefficient old datasets.
|