Abstract
|
The Hadith is the second source of Islamic jurisprudence after Qur¡¯an. Both sources are indispensable for muslims to practice Islam. All Ahadith are collected and are written. But most books of Hadith contain Ahadith that can be weak or rejected. So, quite a long time, scholars of Hadith have defined laws, rules and principles of Hadith to know the correct Hadith (Sahih) from the fair (Hassen) and weak (Dhaif). Unfortunately, the application of these rules, laws and principles is done manually by the specialists or students until now. The work presented in this paper is part of the automatic treatment of Hadith, and more specifically, it aims to automatically process the chain of narrators (Hadith Isnad) to find its different components and affect for each component its own tag using a statistical method: the Hidden Markov Models (HMM). This method is a power abstraction for times series data and a robust tool for representing probability distributions over sequences of observations. In this paper, we describe an important tool in the Hadith isnad processing: A chunker with HMM. The role of this tool is to decompose the chain of narrators (Isnad) and determine the tag of each part of Isnad (POI). First, we have compiled a tagset containing 13 tags. Then, we have used these tags to manually conceive a corpus of 100 chains of narrators from ""Sahih Alboukhari"" and we have extracted a lexicon from this corpus. This lexicon is a set of XML documents based on HPSG features and it contains the information of 134 narrators. After that, we have designed and implemented an analyzer based on HMM that permit to assign for each part of Isnad its proper tag and for each narrator its features. The system was tested on 2661 not duplicated Isnad from ""Sahih Alboukhari"". The obtained result achieved F-scores of 93%.
|