To search, Click below search items.

 

All Published Papers Search Service

Title

Secure and Scalable Blockchain-Based Framework for IoT- Supply Chain Management Systems

Author

Omimah Alsaedi, Omar Batarfi, Mohammed Dahab

Citation

Vol. 22  No. 12  pp. 37-50

Abstract

Modern supply chains include multiple activities from collecting raw materials to transferring final products. These activities involve many parties who share a huge amount of valuable data, which makes managing supply chain systems a challenging task. Current supply chain management (SCM) systems adopt digital technologies such as the Internet of Things (IoT) and blockchain for optimization purposes. Although these technologies can significantly enhance SCM systems, they have their own limitations that directly affect SCM systems. Security, performance, and scalability are essential components of SCM systems. Yet, confidentiality and scalability are one of blockchain¡¯s main limitations. Moreover, IoT devices are lightweight and have limited power and storage. These limitations should be considered when developing blockchain-based IoT-SCM systems. In this paper, the requirements of efficient supply chain systems are analyzed and the role of both IoT and blockchain technologies in providing each requirement are discussed. The limitations of blockchain and the challenges of IoT integration are investigated. The limitations of current literature in the same field are identified, and a secure and scalable blockchain-based IoT-SCM system is proposed. The proposed solution employs a Hyperledger fabric blockchain platform and tackles confidentiality by implementing private data collection to achieve confidentiality without decreasing performance. Moreover, the proposed framework integrates IoT data to stream live data without consuming its limited resources and implements a dual-storge model to support supply chain scalability. The proposed framework is evaluated in terms of security, throughput, and latency. The results demonstrate that the proposed framework maintains confidentiality, integrity, and availability of on-chain and off-chain supply chain data. It achieved better performance through 31.2% and 18% increases in read operation throughput and write operation throughput, respectively. Furthermore, it decreased the write operation latency by 83.3%.

Keywords

Blockchain, Supply Chain, SCM, IoT, Confidentiality

URL

http://paper.ijcsns.org/07_book/202212/20221205.pdf