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Abstract 
Smart homes that integrate Internet of Things (IoT) devices face 
increasing cybersecurity risks, posing significant challenges to 
these environments. The study explores security threats in smart 
homes ecosystems, categorizing them into vulnerabilities at the 
network layer, device level, and those from cloud- based and AI-
driven systems. Research findings indicate that post-quantum 
encryption, coupled with AI-driven anomaly detection, is highly 
effective in enhancing security; however, computational resource 
demands present significant challenges. Blockchain authentication 
together with zero-trust structures builds security resilience, 
although they need changes to existing infrastructure. The specific 
security strategies show their effectiveness through ANOVA, Chi-
square tests, and Monte Carlo simulations yet lack sufficient 
scalability according to the results. The research demonstrates the 
requirement for improvement in cryptographic techniques, 
alongside AI-enhanced threat detection and adaptive security 
models which must achieve a balance between performance and 
efficiency and real-time applicability within smart home 
ecosystems. 
Keywords: 
Smart home security; IoT vulnerabilities; AI-driven anomaly 
detection; post-quantum encryption; blockchain authentication; 

 
1. Introduction 
 

Smart home technologies have transformed 
contemporary living by seamlessly integrating 
automation, real-time control, and personalized 
environments. Through Internet of Things (IoT) 
ecosystems—including smart locks, thermostats, 
cameras, and voice assistants—users gain enhanced 
control and convenience. These systems leverage edge 
computing to reduce latency and support fast decision-
making [1], whereas cloud computing and machine 
learning facilitate predictive behavior and centralized 
data analytics [2, 20]. Despite these advancements, the 
expanding scale of connected devices—expected to 
exceed 75 billion by 2025 [23]—has amplified 
cybersecurity and privacy risks. Earlier foundational 
studies, such as by Weber [22], underscored the 
absence of standardization and governance in smart 

home security, whereas Rajana and Amiripalli [24] 
highlighted optimization-based survivability 
techniques in smart home design published within the 
ETASR framework. Hall et al. [9] emphasized the 
convergence of convenience and risk, whereas James 
[11] proposed smart home intrusion prevention 
systems focusing on real-time anomaly filtering. 

Prior studies have identified a wide range of 
vulnerabilities in smart home environments, including 
insecure communication protocols, weak 
authentication mechanisms, firmware flaws, and 
insufficient encryption [3, 6, 21]. Additionally, a lack 
of uniform regulatory standards and manufacturer 
compliance leads to inconsistent security enforcement 
[17, 22]. Attackers exploit these weaknesses through 
Man-in-the-Middle (MitM) attacks, DDoS 
(Distributed Denial of Service), ransomware, and 
botnet hijacking, often leveraging adversarial AI or 
deepfakes to bypass traditional defenses [4, 13, 15]. 
Research by Yang et al. [23] and Weber [22] 
highlights how poorly secured third-party 
APIs(Application Programming Interfaces) and 
inadequate firmware updates leave user data 
vulnerable to hijacking, profiling, and long-term 
surveillance [5, 8, 14], with additional evidence from 
Fouladi and Ghanoun [7], who critically examined Z-
Wave protocol security, and Hasegawa and Yamada 
[10], whose work on multiple interactions indirectly 
reflects the complexities of cryptographic integration 
in IoT systems. 

In response, numerous mitigation frameworks 
have been proposed. AI-based anomaly detection 
systems [16], blockchain-enhanced authentication [8], 
and post-quantum cryptographic methods [12, 25] 
show promise in countering emerging threats. 
However, these technologies often struggle with 
scalability, computational overhead, and resource 
constraints—limitations especially significant in 
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smart home deployments that depend on lightweight 
devices with minimal processing capacity [2, 18]. 
Moreover, whereas federated learning and policy-
based compliance models attempt to preserve privacy 
and resilience, their real-time applicability remains 
underexplored [20, 19]. 

This study distinguishes itself from prior research 
by offering a comprehensive and scalable security 
framework tailored for smart homes, integrating 
advanced mitigation strategies validated through 
statistical and simulation-based evaluation. In contrast 
to works that emphasize singular approaches or lack 
empirical grounding, this research provides 
comparative and performance-based insight across 
multiple solutions. 

Building upon recent literature, this study 
addresses multiple research gaps in the field of smart 
home cybersecurity. It first develops a structured 
classification of cybersecurity vulnerabilities into four 
central domains: device-centric, network-level, cloud-
based, and AI-targeted threats. This structured 
typology builds on previous research while offering a 
clearer mapping of threat vectors specific to smart 
environments. Second, the study advances prior work 
by performing a statistically grounded comparison of 
mitigation techniques using ANOVA and Chi-square 
analysis, offering empirical insights that extend 
beyond the conceptual frameworks seen in earlier 
studies. Third, it evaluates the real-world applicability 
of post-quantum cryptographic methods using Monte 
Carlo simulations—an area often discussed 
theoretically but seldom validated through simulation. 
Finally, the study conducts a practical feasibility 
assessment of blockchain and zero-trust models within 
resource-constrained IoT environments, adding a 
critical and underrepresented perspective on 
deployment challenges in smart home contexts. This 
multidimensional approach ensures that the study not 
only contributes to the academic discourse but also 
delivers actionable insights for secure and scalable 
smart home implementation. 

The novelty of this work lies in its holistic 
integration of modern mitigation strategies within the 
operational constraints of real-world smart home 
ecosystems, supported by empirical analysis and 
benchmarking, ultimately providing practical, 
adaptable, and secure architecture recommendations 
for next-generation IoT environments. 
 
 

Research Objectives 
• To classify security vulnerabilities in smart home 

ecosystems and analyze their impact on privacy and 
system integrity. 

• To assess the effectiveness of existing and emerging 
mitigation techniques in enhancing smart home 
security. 

• To propose an integrated security framework 
leveraging AI, decentralized authentication, and 
cryptographic mechanisms to counter cyber threats. 

 
2. Literature Review 
 
A. Security and Privacy Issues in Smart Home 

Devices 
However, Smart home technologies are 

convenient, and they provide the convenience of 
automation, but at the risk of being insecure and 
private. According to Yang et al. (2017) [23], the 
vulnerabilities in IoT-based smart homes can be 
attributed to device heterogeneity, weak 
authentication, and encryption flaws. Cyber threats are 
also exposed to inconsistent inter-device 
communication. Regulatory shortcomings were 
pointed out by Weber (2010) [22] that there is no 
unified security protocol, thus leading to scattered 
protection. Due to a focus on usability over security, 
manufacturers do not provide adequate encryption, 
weak authentication, poor firmware updates, leading 
to increased risk of unauthorized access and 
surveillance by users. Sicari et al. (2015) [17] 
investigated the interaction between security, privacy, 
and users’ trust whose findings show that smart home 
devices gather massive user data without any proper 
policy put in place for handling and/or storing it. Weak 
network security allows malicious actors as well as 
unethical entities to do cyber espionage, various kinds 
of phishing, and unauthorized profiling. 
 
B. Network Security Threats and Communication 

Protocol Vulnerabilities 
Exploiting insecure communication protocols is 

one of the main ways for cyberattacks in smart home 
environments. According to Sivanathan et al. (2017) 
[19], IoT smart home traffic patterns are analysed and 
it is proved that smart home devices with predictable 
network behaviour are insecure to the attack such as 
traffic fingerprinting and packet sniffing [7]. The 
researchers discovered the metadata by simply 
monitoring network metadata, an act that bypasses 
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traditional encryption defences, and with it was able to 
infer user behaviours and device states. Later, Matte et 
al. (2016) [14] found some more protocol 
vulnerabilities, especially anonymization protection 
using MAC address randomization techniques. The 
authors showed that these protections can be defeated 
using timing-based attacks, and can thus be used to 
persistently track device activity. Later, Fernandes et 
al. (2016) [6] investigated third-party integrations in 
smart home ecosystems and further investigated the 
weakness in the security of such integrations as APIs 
of third parties do not contain essential security 
controls to prevent unauthorized data flow, which 
eventually leads to cascading security failures among 
several connected devices. 
 
C. Advanced Cyberattack Strategies Targeting Smart 

Homes 
The tools and techniques of traditional cyber 

threats, such as ransomware and distributed denial of 
service (DDoS), have already been transformed and 
incorporated with those of smart home networks due 
to the networks' specific vulnerabilities [13]. 
Referring cyberattacks on smart grid to the attacks to 
smart home infrastructures, Wang and Lu (2013) [21] 
observed that attackers use unpatched firmware and 
default credentials to obtain persistent access. These 
claims were reinforced by Alam and Tomai (2023) [2] 
who categorized advanced smart home cyber threats 
into malware propagation, zero-day exploits, and 
remote access hijacking. 

An automated security verification framework 
that can identify misconfigurations and attack vectors 
in IoT systems is introduced by Nguyen et al. (2018) 
[15]. Their work shows that, due to strategies 
employed by their manufacturers who widely rely on 
default security settings, the bulk of such smart home 
devices are vulnerable to becoming part of botnets. A 
complementary analysis was provided by Buil-Gil et 
al. (2023) [5] explaining how the commodification of 
user data amplifies smart home security risk [11]. 
However, the study noticed that more and more 
cybercriminals are using weaknesses of the smart 
homes for major data breaches, both on the individual 
level and on the level of enterprise users. 
 
D. Cutting-Edge Mitigation Strategies and Security 

Frameworks 
However, with the ominous nature of cyber 

threats, researchers investigated innovative mitigation 

strategies that would fortify smart home security. The 
approach proposed by Gaži et al. (2019) [8], in which 
the proof of stake sidechains is used in a decentralized 
manner to increase authentication and data integrity in 
IoT-enabled environments, provides important 
insights about how blockchain technology can be 
applied to the IoT security [25]. Based on the above 
findings, decentralized consensus mechanisms can do 
away with the risk that is inherent in centralized 
authentication models and thereby reduce the impact 
of credential theft. In the work of Pokhrel et al. (2021) 
[16], machine learning is applied in botnet detection 
and its importance in the usage of AI a driven anomaly 
detection system to detect independent actions on the 
network (in real time). When one looks to combine 
several forms of AI, the resulting hybrid models prove 
to detect smart home cyber threats with accuracy 
greater than those using supervised or unsupervised 
learning separately. According to Sovacool and Del 
Rio (2020) [20], policy-based interventions such as 
government mandated security standards increase 
compliance and make the device more resilient to 
cyber-attacks. One of the models that has been 
purposed is an advanced IoT security model which 
incorporates cryptographic algorithms with intrusion 
detection systems (IDS), presented by Li et al. (2016) 
[12]. The authors demonstrated that adaptive 
cryptographic protocols together with real-time 
network monitoring can be a robust defence against 
emerging cyber threats. Moreover, Singh et al. (2015) 
[18] provided twenty prominent clouds supported IoT 
security issues, and elaborated on the required updates 
to security, artificial intelligence intelligent 
monitoring, and decentralized framework for identity 
management. 
 
E. Historical Development of Smart Home Security 

The early research on smart home security has 
been on basic issues such as connectivity and 
compatibility. Interestingly, Weber was one of the first 
to point out the security and privacy risk in IoT devices 
that there are no standards and regulations in common 
[22]. Considering the recent proliferation of smart 
home technology, Yang et al. (2017) [23] explained 
that weak authentication and diverse devices were 
security issues. Then, the research aimed for more 
sophisticated cyber threats’ detection. IoTSan was 
developed by Nguyen et al. (2018) [15] to find and fix 
security flaws and Gaži et al. (2019) [8] introduced 
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blockchain-based security by transitioning from 
centralized to decentralized protection. 

Smart home security went on to fix basic 
weaknesses over time and with the help of machine 
learning, started using AI for threat detection and 
automatic response. According to Wang and Lu (2013) 
[21], smart home risks are as large as other cyber 
threats and therefore require flexible security systems. 
Third party apps were warned by Sicari et al. (2015) 
and Fernandes et al. (2016) [17, 6] to increase security 
risks, thus leading to stricter access controls. Though 
things have progressed, security is still unpredictable 
since many companies put functionality at the top of 
their minds when weighing between functionality and 
protection. Today, researchers require AI security that 
can quickly respond to ever-growing new threats. 
 
3. Methodology 
 
A. Research Design 

A comprehensive integrative review approach is 
used in this study because it can integrate various 
research findings and combine both qualitative and 
quantitative assessments. This differs from systematic 
or scoping reviews where this study allows us to 
perform a flexible, in-depth evaluation of smart home 
security vulnerabilities and their reduction through 
mitigation techniques. A structured review process 
allows for more replicability and consistency and 
aligns the current work with the latest security 
research in the area of cybersecurity. 
 
B. Data Collection Strategy 

Structured data collection methods existed 
because rigorous methodology was adopted. A 
systematic review of 124 peer-reviewed studies was 
obtained from IEEE Xplore, ACM Digital Library, 
SpringerLink and ScienceDirect and Web of Science 
and Scopus. The selected studies had to originate from 
Q1 and Q2 cybersecurity journals, high-impact 
conference proceedings, and authoritative regulatory 
white papers published between 2010 and 2024. The 
combination of Boolean logic with wildcard operators 
helped researchers achieve better search results to 
collect all necessary information. The research 
implemented policy-based risk mitigation approaches 
by integrating grey literature containing NIST 800-
207, GDPR, and ISO 27001. 
 

 
Fig. 1.  PRISMA flow chart 

The systematic review on smart home security 
vulnerabilities used the PRISMA flow diagram to 
describe its study selection process. The systematic 
review included 124 records obtained through 
databases (90 records) as well as manual screening (34 
records). A total of 104 records moved forward from 
duplicate removal to screening before 35 records were 
excluded based on their title and abstract relevance. 
Full-text assessment of the 69 remaining studies 
resulted in 45 exclusions because of irrelevance (n = 
19), poor methodology (n = 10), non-English language 
(n = 8) and incomplete data (n = 8). The qualitative 
synthesis included 24 studies as its final selection. The 
systematic review benefits from this organization 
method because it improves its transparency and 
maintains both rigor and reproducibility. 
 
C.  Data Extraction, Classification, and Synthesis 

Security vulnerabilities were categorized as four 
primary types, i.e., network layer risks (38%), device-
centric (29%), cloud-centric (22%), and so on, related 
attacks (11%). Most of the network layer 
vulnerabilities were caused by MitM attacks, DDoS 
and insecure communication protocols, whereas 
device-centric threats were due to unpatched firmware 
and weak authentication mechanisms. API security 
flaws and weak encryption were the cloud types of 
risks, and adversarial AI and data poisoning were the 
AI types of risks. 
Also, effectiveness, feasibility, and adaptability of 
mitigation techniques were compared through 
comparison. Traditional rule-based intrusion detection 
system was way behind from the AI-driven anomaly 
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detection system (89% accuracy), whereas blockchain 
authentication dropped unauthorized access by 63%. 
Promising results were obtained from post quantum 
encryption that promised 95% resilience but increased 
computational overhead by 22%, thus, giving far away 
scalability remarks. Device level security was 
reinforced with MFA using Hardware Security 
Modules (HSMs) as part of zero-trust security 
architectures (47% intrusion reduction). 
 
D.  Comparative Evaluation of Security Frameworks 

A structured benchmarking approach was used to 
evaluate implementation feasibility, real–time 
adaptability, security robustness, and adoption rates 
for the security frameworks. As a result, NIST 800-
207 (Zero Trust Model) came out on top, but it was far 
from being a silver bullet: it represented major 
infrastructure changes. GDPR and ISO 27001 made 
sure that we were compliant, but there is nothing in the 
regulation about exact security enforcement rules for 
smart home devices. However, federated learning 
models demonstrated promise towards privacy 
preserving AI security, but this was at a computational 
penalty that limited these models to offline type 
deployment. 
 
E. Advanced Data Analysis Techniques 

The study’s rigor was enhanced through a multi-
tiered data analysis approach. The statistical 
robustness of findings was validated with ANOVA, 
Chi-square tests, and Monte Carlo simulation for 
various levels of variability in the performance of 
security framework. The influential research trends 
were mapped using bibliometric analysis and 
mitigation techniques were compared on detection 
accuracy, false positive rates and computational 
efficiency using meta-analysis. Encryption protocols 
were assessed using the comparative model and 
thematic analysis was used to identify cybersecurity 
challenges and research gaps. 
 
F. Ensuring Reliability and Validity 

Triangulation techniques were employed to 
ensure reliability and validity by cross validating 
findings across methodologies, data sources and 
perspectives of the researchers. The integration 
between qualitative and quantitative approaches 
including methodological triangulation is done and the 
consistency across databases, industry reports and 
regulating frameworks is validated by means of data 

source triangulation. The inter-rater reliability score 
between researcher triangulation (where various 
independent reviewers are involved) was greater than 
90%. The multi layered validation process reduced the 
bias, strengthened the robustness of the study and 
ensured a robust, evidence based, cybersecurity 
assessment. 
 

Table I. Method Overview and Key Analytical Components 

Aspect Key Details Supporting 
Sources 

Research 
Approach 

Integrative Review 
(Qualitative + Quantitative) 

Section III.A; [4, 
15] 

Data Sources IEEE Xplore, ACM, 
Springer, ScienceDirect, 
Web of Science, Scopus 

Section III.B; [4, 
6] 

Timeframe 2010–2024 Section III.B 

Security 
Vulnerability 
Categories 

Network-layer (38%), 
Device-centric (29%), 
Cloud-based (22%), AI-
related (11%) 

[6, 12, 15, 23] 

Mitigation 
Techniques 
Assessed 

AI-driven anomaly 
detection, Blockchain 
authentication, post-
quantum encryption, Zero-
trust security, MFA & HSMs 

[4, 8, 16], [21, 22] 

Security 
Frameworks 
Evaluated 

NIST 800-207, GDPR, ISO 
27001, Federated Learning 
Models 

Section III.D; [1, 
2, 12] 

Statistical 
Techniques 
Used 

ANOVA, Chi-square, Monte 
Carlo Simulations, Meta-
analysis 

Section III.E 

Reliability 
Measures 

Triangulation 
(Methodological, Data 
Source, Researcher), 90%+ 
inter-rater reliability 

Section III.F 

 
By integrating advanced analytical techniques, 

this study ensures a robust cybersecurity assessment 
for smart home environments, providing actionable 
insights for researchers, policymakers, and industry 
stakeholders. 
 
4. Results 
 
A.  Overview of Findings 

Using the extracted data, cybersecurity trends 
involving threats, methodologies and security 
proposed solutions were systematically categorized 
and structured. Empirical, experimental and 
theoretical contributions were classified in this way 
which spanned real-world IoT vulnerability 
assessments, predictive security models as well as 
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mitigation strategies. It performed an integrative 
review of high-impact papers from Q1 and Q2 
cybersecurity journals, high-cited conference 
proceedings, and regulatory white papers containing 
high citation count (≥50), methodological contribution 
and relevance to smart home security. Of these, 124 
studies were systematically analysed, all of them 
published in peer reviewed journals after 2010 and up 
to 2024, accommodating seminal issues and latest 
advances. The dataset included 67 studies on security 
vulnerabilities, 41 studies on mitigation techniques 
and 16 studies on regulatory frameworks and best 
practices for evaluation of the smart home 
cybersecurity measures. 
 
B. Classification of Security Vulnerabilities 

They classified the extracted vulnerabilities 
based on rarity of occurrence, severeness of impact, 
and easiness of exploitation to provide insight to all 
the various types of security flaws. We analysed 
frequency based on recurrence of threats across 
multiple studies, severity with respect to potential 
effect on user privacy and system integrity, and 
complexity depending on the amount of expertise 
needed to perform the attack. This classification 
framework streamlined the analysis of the smart home 
security risks and its consequences. 
 

Table II. Classification of Security Vulnerabilities 

Category Prevalence 
(%) 

Common Threats Supporting 
Sources 

Network-layer 
vulnerabilities 

38% Man-in-the-Middle 
(MitM) attacks, 
DDoS, packet 
sniffing 

Section 
IV.B; [6], 
[12], [15] 

Device-centric 
threats 

29% Unpatched firmware, 
weak authentication, 
hardcoded credentials 

Section 
IV.B; [4], 
[8], [16] 

Cloud-based 
vulnerabilities 

22% API security flaws, 
weak encryption, 
unauthorized data 
access 

Section 
IV.B; [6], 
[21], [22] 

AI-targeted 
attacks 

11% Adversarial AI 
exploits, data 
poisoning, AI-driven 
security manipulation 

Section 
IV.B; [12], 
[23] 

 
C. Effectiveness of Mitigation Techniques 

To validate the performance of various 
mitigation strategies, ANOVA (Analysis of Variance) 
was conducted on a dataset comprising 124 
systematically selected studies. The sample size for 

statistical comparison included aggregated 
effectiveness data from at least 20 studies per 
mitigation technique. The data sources consisted of 
peer-reviewed empirical research, experimental 
cybersecurity reports, and high-impact conference 
papers. This approach ensured a balanced and 
methodologically sound comparison of security 
effectiveness across different mitigation techniques. to 
compare the security effectiveness of different 
approaches across multiple studies. The analysis 
revealed significant differences (p < 0.05) in success 
rates among AI-driven anomaly detection, blockchain 
authentication, and post-quantum encryption 
techniques. 
 

Table III: ANOVA Results for Security Mitigation Techniques 

Mitigation 
Technique 

Mean 
Effectiveness 

(%) 

Standard 
Deviation 

F-
Value 

p-
Value 

AI-driven 
anomaly 
detection 

87.5 3.4 15.82 0.002 

Blockchain 
authentication 

64.2 4.5 14.67 0.005 

Post-
quantum 
encryption 

94.1 2.1 16.23 0.001 

Zero-trust 
security (SDN) 

49.6 5.3 13.98 0.007 

Multi-factor 
authentication 

79.1 3.2 14.85 0.003 

Hardware 
Security Modules 

82.3 3.6 15.41 0.004 

 
Chi-square tests were used to determine the 

correlation between security framework adoption and 
reduction in unauthorized access incidents. Expected 
frequencies were determined by analyzing historical 
intrusion rates across different security frameworks 
and comparing them with real-world implementation 
success rates. The baseline intrusion frequencies were 
established using aggregated data from cybersecurity 
industry reports, empirical case studies, and controlled 
testing environments. The observed frequencies were 
then compared against these expected values to assess 
whether the differences were statistically significant. 
This ensured a robust evaluation of the impact of each 
security framework on reducing unauthorized access 
events. showing a strong relationship (χ² = 21.87, p < 
0.01). 
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Table IV. Chi-Square Test for Security Framework Adoption and 
Unauthorized Intrusions 

Security Framework Reduction in 
Unauthorized 
Intrusions (%) 

χ² Value p-Value 

NIST 800-207 (Zero 
Trust) 

66 21.87 0.001 

GDPR 51 19.45 0.002 

ISO 27001 43 18.12 0.004 

Federated Learning 
Models 

38 16.98 0.007 

 
Additionally, Monte Carlo simulations were 

employed to evaluate post-quantum encryption 
effectiveness under diverse attack scenarios, 
confirming its robustness while highlighting increased 
computational overhead. 
 

 
This figure presents a comparative analysis of 

security frameworks in reducing unauthorized 
intrusions, validated using Chi-square statistical 
testing. The NIST 800-207 (Zero Trust) framework 
demonstrates the highest reduction in intrusions (66%), 
followed by GDPR (51%), ISO 27001 (43%), and 
Federated Learning Models (38%). Corresponding χ² 
values indicate the strength of the association between 
framework adoption and intrusion reduction, with p-
values confirming statistical significance (p < 0.01). 
The results highlight the effectiveness of security 
frameworks in mitigating unauthorized access risks 
within smart home ecosystems. 

Table V. Monte Carlo Simulations for Post-Quantum Encryption 
Effectiveness 

Attack Scenario Encryption 
Strength 

(%) 

Computational 
Overhead 

Increase (%) 

Supporting 
Sources 

Standard Brute-
force Attack 

98.8 11 Section 
IV.C; [18], 

[21] 

AI-Powered Key 
Cracking 

98.0 29 Section 
IV.C; [19], 

[22] 

Quantum 
Computing 
Decryption 

95.5 24 Section 
IV.C; [20], 

[23] 

 

 
Fig. 3. Effectiveness of Post-Quantum Encryption Against 
Different Attack Scenarios: Encryption Strength vs. 
Computational Overhead 

As can be seen on the figure, this means to create 
a visualization of the strength of post-quantum 
encryption techniques in terms of their computational 
overhead and their security in relation to different 
attack scenarios. The highest encryption success rate 
is achieved by the standard brute force attacks with 
almost zero computational overhead (11%). While the 
AI powered key cracking lowers the encryption 
strength slightly (98%) it contributes hugely in 
increasing the computational requirements (29%). 
Quantum decryption challenge is the highest amongst 
all the challenges and leaves the encryption strength at 
95.5% and computation overhead at 24%. The high 
cost of implementing rather than using families of 
advanced encryption algorithms (Families) due to the 
trade-off between the security of Families and the 
processing efficiency in some instances is shown by 
these findings. 
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D. Comparative Analysis of Security Frameworks 
A structured benchmarking of widely adopted 

security frameworks was conducted to evaluate 
implementation feasibility, real-time adaptability, 
security robustness, and adoption rates. The findings, 
validated through industry reports and expert 
interviews, revealed the following insights: 
 

Table VI. Security Framework Capabilities and Deployment 
Challenges 

Security 
Framewo

rk 

Advantag
es 

Limitations Adoptio
n Rate 

(%) 

Supporti
ng 

Sources 

NIST 800-
207 (Zero 
Trust) 

The 
strongest 
security 
model, 
reduced 
unauthoriz
ed access 
risks 

Requires 
infrastructure 
modifications 

67% Section 
III.D; [1], 
[2], [12] 

GDPR Ensures 
privacy 
complianc
e, data 
protection 
mandates 

Lacks specific 
device 
security 
measures 

85% Section 
III.D; [6, 

12] 

ISO 27001 Strong 
enterprise 
security 
model, 
complianc
e standard 

Does not offer 
real-time 
monitoring 

74% Section 
III.D; [6, 

12] 

Federated 
Learning 
Models 

Enhances 
privacy-
preserving 
AI security 
application
s 

Computationa
lly intensive 
for real-time 
use 

42% Section 
III.D; [8, 
16, 22] 

 
5. Discussion 

 
The research examines smart home security 

vulnerabilities and their countermeasures to find 
network-layer threats represent the largest risk at 38% 
while device-centric vulnerabilities amount to 29% 
and cloud-based weaknesses total 22% and AI-
targeted attacks make up 11%. The weak encryption 
and unsecured communication of networks create 
network risks and device vulnerabilities emerge from 
insecure firmware and default credentials. Cloud 
system weaknesses develop from improper 
configurations merged with unauthorized access while 
AI attacks make use of adversarial learning techniques. 
Post-quantum encryption stands out as a mitigation 
technique because it shows 94.1% effectiveness yet 

creates a concern about its power consumption for use 
in low-power devices. The anomaly detection system 
guided by AI attains 87.5% accuracy although it needs 
substantial processing capabilities. The adoption of 
Blockchain authentication and zero-trust security 
stands at 64.2% and 49.6% but these security 
measures need major infrastructure changes. Our 
study discovers that these results illustrate the security 
effectiveness level that leads to trade-offs between 
performance speed and computer system resources. 
The authors enhance past research through organized 
risk categorization and test mitigation solutions by 
employing ANOVA combined with Chi-square 
analysis and Monte Carlo simulations. Existing 
research about cryptography receives additional 
support because it demands improved post-quantum 
encryption solutions that work well within resource-
limited IoT systems. The research findings support 
earlier discoveries although academic articles and 
simulation tests fail to include undocumented 
cyberattacks and real-time security challenges. The 
timing and application ability of AI anomaly detection 
paired with post-quantum encryption on constrained 
IoT devices exists in an unclear status. The 
implementation of legal frameworks along with 
regulatory compliance protocols needs deeper 
integration within cybersecurity governance systems. 
Weak encryption and unsafe communication 
protocols remain prevalent, necessitating better 
authentication methods and privacy-centric AI models. 
Post-quantum encryption and AI-based threat 
detection offer strong protection but require optimized 
implementations for real-world deployment. 
Blockchain authentication and zero-trust security 
provide additional safeguards but demand significant 
adjustments to current infrastructure.   

Future research should focus on optimizing 
post-quantum encryption through lightweight 
cryptographic algorithms such as lattice-based or 
hash-based schemes, which can offer quantum 
resistance whereas minimizing computational load. 
For AI-based threat detection, employing federated 
learning or TinyML models can allow localized, 
privacy-preserving inference directly on edge devices. 
Real-time applicability could also be enhanced 
through energy-efficient inference engines and edge 
AI frameworks that reduce latency by processing data 
closer to the source. Exploring hybrid models that 
combine blockchain with edge computing could 
balance decentralization with responsiveness. These 
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directions can help bridge the gap between strong 
theoretical security and practical deployment in smart 
home environments. 
 
6. Conclusion 

 
Awareness of the risks and the increase in 

cybersecurity threats on network, device, cloud, and 
AI layers for smart home ecosystems, who are pushed 
by the rise of IoT devices, is prevalent in the market. 
We then identify AI driven anomaly detection, 
blockchain authentication and post quantum 
encryption as vital mitigation strategies but hindered 
by high computational overhead, scalability 
constraints and incorporation with the infrastructure. 
AI driven anomaly detection has an accuracy of 87.5% 
and concerns regarding privacy as well as data 
governance but deals with 22% increase in the 
processing demands; on the other hand, post quantum 
encryption has 94.1% resilience against cryptographic 
attacks with 22% more processing demands. 
Decentralized identity management makes it possible 
to authenticate a very large number of identifiers 
through blockchain authentication, improving security, 
while the latency and lack of interoperability of the 
transactions is still an issue.  

Analyses with ANOVA, Chi-square tests, and 
simulations show that zero believe architectures lessen 
access to 66% against unauthorized entry however, the 
enactment of zero trust frameworks is still 
inconclusive as a result of score fracturing and 
incapacitating impediments to discussion. The paper’s 
findings emphasize the need for intelligent, adaptive 
security frameworks that combine privacy friendly AI, 
federated learning, and quantum resistant 
cryptography. There is need for future research to 
focus on lightweight AI driven security solutions, real 
world cyber-attack simulations and regulatory 
harmonization to improve security’s resilience. 
However, autonomous, intelligence driven security 
architectures are necessary in which smart home 
environments can continue to be protected, scalable, 
and efficient as cyber threats continue to increase in 
complexity.2 
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