
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

179

Manuscript received December 5, 2024
Manuscript revised December 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.12.21

Scrutinizing UML Teaching and Learning Modeling Tools

Abdulqader Almasabe1, Stephanie Ludi1, Abdelrahman Osman Elfaki2

University of North Texas TX, USA1

University of Tabuk, Tabuk, KSA2

Abstract
The purpose of this paper was to identify, synthesize, and analyze
the modeling tools, especially those that support UML modeling
and interactive learning methods for Software Engineering and
Information Systems Design courses. The goals were to guide both
professors and students to choose the proper modeling tools to
support software engineering courses objectives. The research
identified many successful modeling tools that can help students
use what is suitable for learning UML modeling and contribute to
engaging students in modeling. Moreover, this research used the
meta-ethnography method for synthesizing qualitative results in
the area of software engineering, especially modeling. Group of
modelling tools have been chosen for this paper based on their
usages popularity and successfulness in producing high quality
design models. The contribution of this paper is highlighting and
defining the strengths, weakness, and limitations of each studied
tool.
Keywords:
System Development; Modelling; UML

1. Introduction

Software engineering requires practical application of
knowledge, and its main activity is to perform software
development. It is not enough to teach software engineering
through traditional theory-based lectures, because the
course should be interactive and a collocative activity [1],
[2]. Software modeling is the core topic in teaching
software engineering, since modeling plays a major role in
understanding its fundamental concepts and developing
high-quality software [3]. We use models all the time to
think about problems; solve these problems; construct
mechanisms; analyze, design, and develop software; and
teach. Besides, models can improve our understanding of a
system’s behavior and engage learners and students in
modeling because models help students and educators learn
more robustly [4], [5].

Unified modeling language (UML) is a modeling
system that can simplify communication between software
engineers and help developers deal with difficult problems
by developing the issues, solving the problems, and
picturing the design of a system [6]. UML has become a de

facto standard language of the software development
process, and software developers should be prepared to use
UML and modeling effectively in their work. In addition,
UML uses diagrams in software development without
providing instructions for using these diagrams, so it is the
only language that supports diagrams notation.

However, using modeling tools is important for
teaching students how to model, turn their models into real
executable systems, and get useful feedback about their
models [7]. Students who learn to model by documentation
or simple drawing tools are disadvantaged when they enter
the job market [8]. Therefore, knowing the strengths and
weaknesses of modeling tools (especially those supported
by UML) can help professors select tools that teach their
students in an efficient way. Professors should choose
modeling tools that are free and open source, with
considerations of their use, complexity, support for UML,
the feedback they give, and their installation (availability).
If students are allowed to select their modeling tools, it
would be useful for them to know the strengths and
weaknesses of each tool so that they can share that
knowledge with their peers.

The purpose of this research was to identify, synthesize,
and discuss the strengths and weaknesses of modeling tools,
especially those that support UML modeling and interactive
learning methods for software engineering and courses in
information system design. These are interactive learning
courses that also use UML modeling. Knowing the benefits
and drawbacks of modeling tools enables professors and
students to choose the proper one. These modeling tools can
help students learn UML modeling, and that will help to
engage students in modeling. Besides, this research used
meta-ethnography methods for qualitative methodology
and for synthesizing its findings.

2. Research Question

In this section, the boundaries and scope of this
paper have been denoted by putting the research questions
as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

180

- What are the strengths (benefits) that motivate
professors and students use modeling tools for
teaching and learning UML modeling?

- What are the weaknesses (drawbacks) that
discourage professors and students from using
modeling tools for learning UML modeling?

- What are the proper modeling tools for teaching
and learning UML modeling?

- How can modeling tools support an interactive
learning method?

3. Literature Review

In this section, we focus on the research that has
studied the features of UML tools and some research that
used modeling tools as part of interactive learning. The
findings of the literature review are used in the methodology
section, where meta-ethnography is the qualitative
methodology applied to the literature findings. Therefore,
we identify and synthesize the disadvantages and
advantages of modeling tools for students to learn and
professors to teach based on their strengths and weaknesses,
and whether they can be used to support interactive learning.

A. Research Used a Modeling Tool to Support
Interactive Learning

Krusche, et al. [9] conducted research using an online
editor that helped more than 1000 students in their software
engineering modeling course for undergraduate students.
With the increase in the number of students in software
engineering introductory courses, such as UML modeling,
it is difficult for instructors to teach the creative aspects of
modeling and get feedback from each student, especially for
exams and correcting exercises. Besides, it is not possible
to evaluate output models solutions immediately in a
software engineering course, especially UML, because
there could be multiple acceptable solutions for each
question. Researchers have developed an interactive
learning method for modeling that is based on the usability
of online editors, such as Artemis. Artemis is an open-
source and exercise system that gives individual feedback.
It is used in interactive learning courses by many
universities, and it integrates with Apollon. Apollon is an
open-source and online modeling editor that provides seven
UML diagrams. Artemis and Apollon support students and
instructors in learning and teaching modeling throughout
the entire software engineering lifecycle. Based on an
online survey, data analysis, and quasi-experiment, an
interactive learning method for modeling that used an easy
online editor improved the learning and outcomes of
students by up to 87%, and it increased their motivation for
using modeling. The benefits of Apollon are that it is an

open-source, lightweight, free web application. It is easy to
use, and it supports the most important UML diagrams (use
case, class, activity, object, communication, component,
and deployment). However, Apollon is not fully diagramed,
which is a weakness [9], [10].

The work in [11] presented a study at the Kaunas
University of Technology for a course on information
system design course that covered topics on UML. Because
students were losing their motivation and engagement in the
learning process, the researchers proposed a course that
implemented gamified UML and a course to teach system
design using a Moodle platform to overcome the problem.
Moodle is an e-learning management system or e-learning
tool that is free and open source. The course in information
system design taught UML and principles of the Relational
Unified Process (RUP), and it covered a wide selection of
topics. They used plug-ins to extend the Moodle
functionality and customize the course materials. The
course was divided into 10 levels according to UML
diagrams and RUP engineering disciplines to give more
organization and interest to the course. The 10 levels were
divided into two categories: syntax for UML diagrams and
semantic levels for RUP. Based on a survey and their
analysis, the interactive learning method that used gamified
UML and taught the design course on the Moodle
management system had a positive effect on students’
grades. In addition, the gamified course succeeded in
teaching the basics of UML, and students planned to
continue using it because they enjoyed using it. However,
this course had a small number of students, so the research
should be extended to include more students. The benefits
of Moodle platforms are that they are widely available,
customizable, and open source. However, they were
developed to deal with large projects (small and medium
schools), and some students had difficulties (such as
shutting down or blocking) when they took tests or accessed
materials [11].

B. Students’ and Professors’ Experience with Modeling
Tools

The work in [8] conducted a survey on students’
experience with 31 UML tools for software modeling. The
117 participants who took the survey had used these
modeling tools and studied software engineering courses in
seven different countries: the United States, Brazil, the
United Kingdom, Canada, Spain, China, and Denmark. The
research focused on the features, weaknesses, and strengths
of the UML tools, so professors and students could select
tools that mattered the most to students. Then, the
researchers focused on the nine UML tools that were most
heavily used, and they examined the tools’ strengths and
weaknesses in terms of feedback, use, installation, learning,
cost, and the ability to draw diagrams. The researchers
found that students chose the modeling tools based on being

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

181

free, easy to install, easy to learn, whether they generated
code, and whether they supported important notations. They
also noted the students’ complaints about a lack of feedback,
diagrams that were hard to draw, and whether the programs
were slow to use [8].

The following 31 modeling tools (were used in seven
countries and provided 149 detailed responses from 117
students) have been selected carefully based on their
popularity and successfulness in producing correct models
that meet its targeted design. These tools are: ArgoUML,
StarUML, MagicDraw UML, draw.io, Eclipse Modeling
Tools, IBM Rational Software Modeler, jUCMNav,
OmniGraffle, OSATE, PlantUML, Umple, Violet, Visio,
Visual Paradigm, yED USA 15 Acceleo, Cacoo, draw.io,
OSATE, Astah, Dia, LucidChart, Papyrus, Simulink, USE,
yUML, Gliffy, and Edraw.

The following are the modeling tools that were most heavily

used by students, with their benefits and drawbacks:

1. StarUML:

a. Feature: provides full UML, ERD, DFD,

cross-platform, actively maintained, model

analysis, some code generation, and open

source.

b. Benefits: wide and easy to use.

c. Drawbacks: the least ability to draw diagrams,

only version 2010 is free and open source, and

it needs improvement.

2. Umple:

a. Features: supports full UML2 subset (class

state), ERD, textual, diagrammatic modeling,

cross-platform, model analysis, actively

maintained code generation, free, and open

source.

b. Benefits: good feedback, very easy to use.

c. Drawbacks: most buggy.

3. MagicDraw:

a. Features: support full UML2, cross-platform,

model analysis, actively maintained code

generation.

b. Benefits: wide to use.

c. Drawbacks: not open source, not free, has a

speed problem or slow to use, and needs

improvement.

4. ArgoUML:

a. Features: supports UML1.xsubset, cross-

platform, model analysis, limited code

generation, free, and open source but old:

from 2014.

b. Benefits: very easy to use.

c. Drawbacks: Lack of feedback, least ability to

draw diagrams, and needs improvement.

5. Astah:

a. Features: supports UMLs, cross-platform,

some model analysis, limited code generation.

b. Benefit: very easy to use.

c. Drawbacks: not free and not open source.

6. USE:

a. Features: Textual modeling and more focus on

class diagrams, OCL constraints, cross-

platform, actively maintained, and model

analysis.

b. Benefits: Good feedback, free, and open

source.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

182

c. Drawbacks: Least able to draw diagrams and

least easy to use.

7. Eclipse Modeling Tool:

a. Features: Supports full UML2, cross-platform,

actively maintained, and model analysis.

b. Benefits: perceived benefit in code generation.

c. Drawbacks: Most complex among the nine

tools, slow to use or has a speed problem, and

the least easy to use.

8. Papyrus:

a. Features: Supports full UML2, flagship

Eclipse project, cross-platform, model

analysis, actively maintained, code generation.

b. Benefits: wide to use, free, open-source, and

good feedback.

c. Drawbacks: difficult to use, most buggy, and

needs improvement.

9. Visual Paradigm:

a. Features: Supports full UML2, cross-platform,

code generation, model analysis, and is

actively maintained.

b. Benefit: wide to use.

c. Drawbacks: not free, not open source, difficult

to use, and needs improvement.

As we see in the details above regarding the strengths
and weaknesses of each modeling tool, the most important
for this research is that all the tools support UML modeling.
There are some tools that are difficult to use, are not good
at drawing diagrams, need improvements or updates, are not
free, are not open source, and have speed problems. This is
especially true of Eclipse modeling, the most complex tool

among the nine listed. Moreover, ArgoUML and Astah do
not provide feedback according to the students’ complaints,
and ArgoUML, StarUML, and USE provide the least ability
to draw diagrams for students. Besides, MagicDraw and
Eclipse have speed problems (they are slow to use), and
Umple and Papyrus are the buggiest tools among the nine.

Conversely, some tools are easy to use, provide good
feedback, are wide to use, free, and open-source. The tools
perceived as the easiest to use were Umple, ArgoUML,
Astah, and USE, while Eclipse modeling and Papyrus were
perceived as the least easy to use. In addition, Payrus,
Umple, and USE gave good feedback. All the factors of the
modeling tools are important, such as being easy to draw
diagrams, giving feedback, ease of use, free, open-source,
and speed. However, drawing diagrams and feedback are
the most important factors in the modeling tools based on
my research because UML modeling must be an interactive
learning method that can help professors, students, and
educators interact and learn from each other.

In 2016, Agner and Lethbridge [12] obtained research
data about the advantages and disadvantages of modeling
tools from 125 professors in 30 countries. All the professors
had taught undergraduate software modeling for 5 years.
The professors had used many tools, and the tool most used
was ArgoUML, at 36.6%. Five other tools had been used by
more than 20% of the professors: StarUML, Visual
Paradigm, Papyrus, MagicDraw, and Astah. The
advantages and benefits that motivated professors to use
these tools were that they were easy to learn, free, and easy
to install, and they supported the most significant notations.
The easiest-to-use tools were Umple, PlantUML, and Visio,
and the least complex tools to use were Visual Paradigm
and Astah [12].

On the other hand, the most difficult to use were IBM
Rational Rhapsody, BoUML, Papyrus, and The Acceleo,
and the tools that received the most complaints were
MagicDraw and Papyrus because they are more complex,
according to the professors.

Kuzniarz and Martins [13] presented research in 2016
on techniques, methods, and tools used in teaching a course
on model-driven software development (MDSD). Seven
professors from five countries—Spain, Canada, Brazil,
Poland, and Sweden—had taught MDSD courses and
participated in this pilot study in which MDSD analyzed
subjects such as UML modeling, requirements modeling,
and model transformation. The findings identified 10 tools
used to teach modeling in MDSD: ArgoUML, Acceleo,
Astah, Eclipse Modeling, Papyrus, Visual Paradigm, OCL
Editor, ATL, Enterprise Architect, and Rational Software.
Visual Paradigm was used by three professors, and it was
the tool most used of the 10 tools. Moreover, students

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

183

worked on group projects to help them understand UML
modeling concepts [13].

A survey study was presented by Reggio, Leotta, and
Ricca in 2014 [14] on the use of UML diagram types. This
research aimed to discover which UML diagram tools were
known and used by the participants. Most survey
participants were academic professors and Ph.D. students
who complained about the UML complex [14]. Another
study discussed practices by Paige, Polack, Kolovos, Rose,
and Matragkas for teaching modeling. It showed that the
tools did not provide feedback, lacked resources, and were
complex to use, based on the researcher’s experiences about
the complaints that constrained the use of tools to teach
modeling [15]. The literature showed that the benefits and
drawbacks of all the modeling tools supported UML tools,
which can be used for interactive learning and teaching by
professors, students, and educators.

4. Research Methodology

This literature review was then analyzed by meta-
ethnography, a method published in 1988 by Noblit and
Hare [16]. Most approaches to qualitative synthesis are
based on meta-ethnography. They are called systematic
qualitative reviews, which draw the findings from
individual research together. This method is an attempt to
develop knowledge synthesis in an inductive and
interpretive form as an educational synthesis that uses
aggregation. The thematic approach abstracted data and
isolated elements in each study, and it failed schools to
desegregate. Because abstraction minimizes the uniqueness
of each site, the common findings in the context became a
confounding factor in the study instead of providing an
explanation of these findings as a contribution. Therefore,
the synthesis did not give researchers and policy-makers an
understanding of what went wrong and what could be done.
To address these limitations, Noblit and Hare developed a
distinct method for synthesizing qualitative studies that is
interpretive rather than aggregative, and it was informed by
Turner’s theory of social explanation [16].

However, the interpretive explanation required
developing an understanding of multiple cases, narratives,
accounts, or studies. This is a long-term intensive study that
includes interviews, observation, and analysis of documents,
which concerned Noblit and Hare. To construct an approach
to reducing these long-term intensive studies, Noblit and
Hare developed an approach called meta-ethnography. This
approach is used in most qualitative research because it
provides a strict procedure for deriving substantive
interpretations of any set of ethnographic or interpretive
research. Consequently, Noblit and Hare identified seven
phases that are compatible with other methods of synthesis
but differ in their procedures and assumptions. Meta-

ethnography phases may occur in parallel and overlap when
they are observed in practice. The first difference is that the
general approach of qualitative methods seeks to achieve an
interpretive explanation by choosing the sample for the
research to be related to the topic of interest rather than
being exhaustive. The second difference seeks to reduce the
account while keeping a sense of the account by using the
explanations and interpretations in the original studies as
data based on the selection and analysis of key metaphors
[16].

The seven phases of Noblit and Hare’s meta-ethnography

are as follows:

1. Getting started: Identifying the focus of interest

of research in a qualitative study.

2. Deciding what is relevant to the initial interest:

Using relevant conferences, papers, and journal

articles for literature and not being exhaustive.

3. Reading the studies: Reading the studies

repeatedly to find the metaphors.

4. Determining how the studies are related:

Listing the concepts or metaphors in the studies

and finding their relations to each other.

5. Translating studies into one another:

Comparing the concepts or metaphors.

6. Synthesis translating: Deciding whether there are

common types of translation or if some

translations or concepts can encompass others.

7. Expressing the synthesis: Proposing a name for

the proposed synthesis, findings, or result.

Thus, this approach uses translation processes with the
concepts, metaphors, and their interrelationships and
compares one account with another account. The objective
of the translation process is to maintain the original meaning
and contextualization because it is idiomatic and

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

184

concentrates on translating the meaning of the text instead
of a literal translation. This is the third difference. Thus,
there are three potential types of relationships defined by
Noblit and Hare to lead translation and subsequent synthesis:

a. Reciprocal translation: This assumption applies

when the concepts (accounts) of the studies are

directly similar and comparable [16] [17].

b. Refutational translation: This assumption applies

when the concepts (accounts) may conflict or are

in relative conflict with each other [17].

c. Line of argument: This assumption applies when

the concepts or accounts are not directly

comparable and similar or do not conflict with

each other. This line of synthesizing the argument

is based on interference [17].

So, both translation and synthesis involve constant
comparison to determine how studies relate to each other by
analyzing the text until a comprehensive understanding of
the concept is achieved. Then, the synthesis is done. How
translations are synthesized, and the product of this process
depends on how studies relate to each other. Both
translation and synthesis involve continuous comparative.
analysis of texts until a comprehensive understanding of the
phenomena is realized and the synthesis is then complete.

5. Results and Discussion

Getting started: This research’s main topic is to identify
and synthesize modeling tools and determine if they support
interactive methods for teaching and learning UML
modeling tools. The information comes from various
related studies in different conference papers and journal
articles. The findings of these studies help professors with
teaching and students with learning UML modeling in an
efficient way.

Deciding what is relevant to the initial interest: The
studies that are relevant to this research are related only to
tools used for teaching and learning UML modeling. Thus,
all the text articles in the literature review came from
several conference papers and journal articles associated

with UML modeling. We used the following keywords for
searching: UML modeling, tools used for UML modeling,
and interactive learning methods for teaching UML
modeling. As a result, many articles were found in the
search process. Then, based on the literature review, the
standards must be related to modeling tools. The next step
used the results that came from the literature screening.

Reading the studies: Many articles related to UML
modeling tools and how they support interactive learning
methods have been studied and read repeatedly and traced
precisely. Consequently, the interpretative metaphors in the
literature are in the form of concepts based on the modeling
tools used for teaching and learning UML modeling. Thus,
the explanation of each study concept (metaphor) can be
used as a success factor or tool for teaching and learning
UML modeling.

Determining how the studies are related: To identify the
relationships among the studies and how they are to be
synthesized, the studies must be put together [16]. To
understand the relationship of each study by the explanation
that has been done in the literature, the comparisons were
done on the concept (tools) across several studies. Therefore,
the relationship is reciprocal because there are comparable
features and similarities between the studies.

Translating studies into one another and Synthesis
translating: Both the translating and synthesizing were
done concurrently using meta-ethnography [16]. The
translation step provides the concepts from one study and
compares them to another study that has the same or similar
concepts, even if they have different names, as mentioned
in this process. The synthesis not only implies individual
parts, but makes a whole into a common concept that
includes other identified concepts. However, the studies in
this paper included more than 11 synthesized success
modeling tools found in many types of research and the
synthesizing process defined above.

Expressing the synthesis: This research is an expression of
synthesis in which each modeling tool in Table 1 is
suggested by the concepts in the studies. All modeling tools
shown in Table 1 can be used for teaching and learning
UML modeling. Some are used to support interactive
learning, and they have strengths and weaknesses. There is
no ranking for those tools; no one is less or more important
than another. Table 1 shows the summary of extracted tools.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

185

Table 1: The summary of extracted tools

No Modeling Tool

1 StarUML

2 Umple

3 MagicDraw

4 ArgoUML

5 Astah

6 Eclipse Modeling Tool

7 USE

8 Papyrus

9 Visual Paradigm

10 Apollon

11 IBM Rational Rhapsody

12 BoUML

13 Acceleo

14 Moodle Platform

The findings in this research have used the
methodology of meta-ethnography, which identifies and
synthesizes the weaknesses and strengths of modeling tools
for students to learn and professors to teach, based on the
modeling tools used to support interactive learning.

First, SartUML provides full UML, ERD, DFD, open-
source, cross-platform, wide, easy-to-use, and code
generation, but it has the least ability to draw diagrams and
needs improvement because only the 2010 version is -open
ources and free. This tool is good for professors and

students who want a tool to support full UML modeling,
free, open-source, and easy to use. It is not for those who
want an updated tool with more ability to draw diagrams.
Second, Umple supports full UML2, ERD, textual, cross-
platform, open source, free, actively maintained code
generation, and good feedback, and it is one of the easiest
modeling tools to use. However, it is also the buggiest tool,
which is not good for those who do not like buggy tools.

Third, MagicDraw provides full UML2, cross-
platform, model analysis, actively maintained code
generation, and wide and easy to use, but it is not open
source, not free, slow to use, and needs improvement. Thus,
it has several drawbacks that are not good for professors,
students, and educators who are looking for these features.
Fourth, ArgoUML supports UML1, cross-platform, model
analysis, limited code generation, and free and open-source,
and it is one of the easiest modeling tools to use. But it is an
old version, from 2014, lacks feedback, is not very good at
drawing diagrams, and needs improvement. It is not good
for professors who want to use it in an interactive learning
method because of the lack of feedback and the issue of
drawing diagrams. These are important features that support
the learning method.

Fifth, Astah is used for UMLs, cross-platform, some
model analysis, and limited code generation, and it is one of
the easiest to use. However, it is not good for those looking
for a free and open-source modeling tool. Sixth, the Eclipse
Modeling tool supports full UML2, cross-platform,
perceived benefit in code generation, and model analysis.
On the other hand, it is one of the most complex among the
modeling tools. It has speed problems, and it is one of the
least easy to use. It is not good for professors and students
who are searching for these features. Seventh, the USE
modeling tool is one of the least able to draw diagrams and
the least easy to use, but it has good features, such as textual
modeling and more focus on class diagrams, OCL
constraints, cross-platform, actively maintained, provides
model analysis and good feedback. It is free and open
source, which makes it a good choice for professors and
students. It can support interactive learning because of its
good features, especially feedback, free, and open source.

Eighth, Papyrus provides full UML2, cross-platform,
model analysis, actively maintained, code generation, wide-
to-use, free, open-source, and good feedback. This makes it
very good to use, and it supports interactive learning. On
the flip side, this tool is difficult to use, needs improvement,
and is one of the buggiest of the modeling tools. Ninth, the
Visual Paradigm tool is difficult to use, not free, not open
source, and needs improvement, but it provides full UML2,
is wide to use, cross-platform, code generation, model
analysis, and is actively maintained. Tenth, the Apollon tool
is an open-source, lightweight, free web application. It is
easy to use, and it supports the most important UML
diagrams (use case, class, activity, object, communication,
component, deployment diagrams). This tool is a very good
modeling tool that is used for interactive learning in
software engineering, which has improved the learning and
outcomes of students by up to 87% and increased their
motivation for using modeling. But Apollon tool is not fully
diagramed, which is a weakness.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

186

Eleventh, the Moodle platform is free, available,
customizable, and open source, but it is developed to deal
with big projects (small and medium schools), and it has
some troubles (shut down or blocking) when students take
tests or access materials. The Moodle platform was used for
a gamifying course that presented an implementation of
gamified UML and an approach for teaching information
systems design. The survey results and the analysis show
that it is an interactive learning method that uses gamified
UML. Teaching the design course with the Moodle
management system had a positive effect on student grades,
and students planned to continue using it in the future
because they enjoyed using it. Last, IBM Rational
Rhapsody, BoUML, and the Acceleo modeling tools are the
ones most difficult to use, according to the professors. On
the other hand, they are wide to use. and students worked
on group projects to help them understand UML modeling
concepts.

All the above modeling tools support UML modeling,
which helps professors in teaching and students to learn
UML modeling. These modeling tools are used by students
to work on group projects to understand UML modeling
concepts. Some of them are used in interactive learning in
software engineering and courses in information systems
design, and they have improved students’ learning and
outcomes. As we discussed, the modeling tools’
weaknesses and strengths can help professors, students, and
educators choose the right modeling tool based on their
needs. Drawing diagrams, providing feedback, being easy
to use, and being free are the most important factors in
modeling tools because UML modeling must use
interactive learning, so professors, students, and educators
can interact and learn from each other.

6. Conclusion

Modeling is the fundamental process in software
engineering in the corner stone for developing
computerized systems [19-22]. The purpose of this study
was to identify, synthesize, and discuss the strengths and
weaknesses of modeling tools, especially those that support
UML modeling and interactive learning methods in courses
that use modeling tools, such as “Software Engineering and
Information Systems Design.” The objectives were to guide
both professors and students in choosing the proper
modeling tools for their software engineering courses and
other courses that use modeling as an interactive learning
method. As a result of this research, we have identified
many successful modeling tools. These tools can help
students use what is suitable for learning UML modeling
and contribute to engaging students in modeling. Besides,
this research used the meta-ethnography method for

synthesizing qualitative results in the software engineering
area, especially modeling.

References

[1] Bruegge, B., Krusche, S., & Alperowitz, L. (2015).
Software engineering project courses with industrial
clients. ACM Transactions on Computing Education
(TOCE), 15(4), 1-31.

[2] Whitehead, J. (2007, May). Collaboration in software
engineering: A roadmap. In Future of Software
Engineering (FOSE'07) (pp. 214-225). IEEE.

[3] R. F. Paige, F. A. Polack, D.S. Kolovos, L. M. Rose, N.
Matragkas, and J. R. Williams, “Bad modeling
teaching practices.” in Proceedings of the ACM/IEEE
17th International Conference on Model Driven
Engineering Languages and Systems—Educators
Symposium (Educators’ Symposium@MODELS)
(2014)

[4] B. Crawford, and M. Cullin, “Supporting prospective
teachers’ conceptions of modelling in science,”
International Journal of Science Education, 26(11), pp.
1379–1401, 2004.

[5] C. Schwarz, B. J. Reiser, E. A. Davis, L. Kenyon, A.
Achér, D. Fortus, et al. “Developing a learning
progression for scientific modeling: Making scientific
modeling accessible and meaningful for learners,”
Journal of Research in Science Teaching, 46(6), pp.
632–654, 2009. https://doi. org/10.1002/tea.20311

[6] C. T. Nicolaou, and C. P. Constantinou, “Assessment
of the modeling competence: A systematic review and
synthesis of empirical research,” Educational Research
Review, 13(3), pp. 52–73, 2014.

[7] S. Akayama, B. Demuth, T. C. Lethbridge, M. Scholz,
P. Stevens, and D. R. Stikkolorum, “Tool use in
software modelling education.” in Proceedings of the
ACM/IEEE 16th International Conference on
ModelDriven Engineering Languages and Systems—
Educators Symposium, Miami, USA, 2013.

[8] Agner, L. T., Lethbridge, T. C., & Soares, I. W. (2019).
Student experience with software modeling
tools. Software & Systems Modeling, 18(5), 3025-
3047.

[9] S. Krusche, N. von Frankenberg, L. M. Reimer, and B.
Bruegge, “An interactive learning method to engage
students in modeling,” in Proceedings of the
ACM/IEEE 42nd International Conference on
Software Engineering: Software Engineering
Education and Training (pp. 12–22), June 2020.

[10] S. Krusche, N. von Frankenberg, and S. Afifi,
“Experiences of a software engineering course based
on interactive learning,” in SEUH, pp. 32–40, 2017.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

187

[11] M. Jurgelaitis, V. Drungilas, and L. Čeponienė,
“Gamified Moodle course for teaching UML,” Baltic
Journal of Modern Computing, 6(2), pp. 119–127,
2018.

[12] L. T. Agner, and T. C. Lethbridge, “A survey of tool
use in modeling education,” in Proceedings of the
ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems
(MODELS), pp. 303–311, 2017.

[13] L. Kuzniarz, and L. E. G. Martins, “Teaching model-
driven software development: A pilot study,” in
Proceedings of the ITiCSE Working Group Reports,
New York: ACM, 2016, pp. 45–56.

[14] Reggio, G., Leotta, M., & Ricca, F. (2014, September).
Who knows/uses what of the UML: A personal opinion
survey. In International Conference on Model Driven
Engineering Languages and Systems (pp. 149-165).
Springer, Cham.

[15] R. F. Paige, F. A. Polack, D. S. Kolovos, L. M. Rose,
N. Matragkas, and J. R. Williams, “Bad modelling
teaching practices” in ACM/IEEE 17th International
Conference on Model Driven Engineering Languages
and Systems—Educators Symposium, Valencia, Spain,
2014.

[16] G. W. Noblit, and R.D. Hare, Meta-Ethnography:
Synthesizing Qualitative Studies. London: SAGE
Publications, Inc., 1988.

[17] M. Edwards, M. Davies, and A. Edwards, “What are
the external influences on information exchange and
shared decision-making in healthcare consultations: A
meta-synthesis of the literature,” Patient Education
Counsel, 75, pp. 37–52, 2009.

[18] P. J. Clarke, and A. Pierantonio, “Teaching modeling:
A software perspective. Computer Science
Education, 28(1), pp. 1–4, 2018.

[19] A. O. Elfaki, S. Phon-Amnuaisuk, , &C.K. Ho:
Modeling variability in software product line using first
order logic. In 2009 Seventh ACIS International
Conference on Software Engineering Research,
Management and Applications (pp. 227-233). IEEE,
2009.

[20] Y Duan, C Cruz, AO Elfaki, Y Bai, W Du: Modeling
value evaluation of semantics aided secondary
language acquisition as model driven knowledge
management." In Computer and Information Science,
pp. 267-278. Springer, Heidelberg, 2013.

[21] Y Duan, Q Duan, AO Elfaki, C Ren: Formalizing over
design and under design of value engineering for
context-aware cloud service development. In 2015 3rd
International Conference on Future Internet of Things
and Cloud (pp. 72-79). IEEE.2015.

[22] A Elfaki, A Aljaedi, Y Duan: Mapping ERD to
knowledge graph. In 2019 IEEE World Congress on
Services (SERVICES) (Vol. 2642, pp. 110-114).
IEEE.2019.

