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Abstract . 
This research introduces a computer-aided intelligence model 
designed to automatically identify positive instances of COVID-19 
for routine medical applications. The model, built on the 
Generalized Linear architecture, employs the TwoStep-AS 
clustering method with diverse filter relatives, abstraction, and 
weight-sharing properties to automatically identify distinctive 
features in chest X-ray images. Unlike the conventional 
transformational learning approach, our model underwent training 
both before and after clustering. The dataset was subjected to a 
compilation process that involved subdividing samples and 
categories into multiple sub-samples and subgroups. New cluster 
labels were then assigned to each cluster, treating each subject 
cluster as a distinct category. Discriminant features extracted from 
this process were used to train the Generalized Linear model, which 
was subsequently applied to classify instances. The TwoStep-AS 
clustering method underwent modification by pre-aggregating the 
dataset before employing the Generalized Linear model to identify 
COVID-19 cases from chest X-ray findings. Tests were conducted 
using the COVID-19 public radiology database guaranteed the 
correctness of the results. The suggested model demonstrated an 
impressive accuracy of 90.6%, establishing it as a highly efficient, 
cost-effective, and rapid intelligence tool for the detection of 
Coronavirus infections. 
Keywords 
Generalized Liner model, Covid-19, Two Step-AS, Clustering, X-
ray images 

 

1. Introduction 
 

Covid-19 constitutes a diverse domestic of diseases 
capable of infecting humans and causing severe illnesses[1]. 

The current pandemic stems from a novel animal-borne 
illness, indicating that humans have not previously 
encountered this virus, and it has transitioned from animals 
to humans[3]. Given its novelty, there is a lack of inherent 
immunity among people, which distinguishes it from other 
viruses and contributes to its potential for widespread or local 
epidemics[4]. In this context, an epidemic is known as an 
eruption of a communicable disease significantly increasing 
humanity and illness over a superior geographic area, while 
an epidemic is a disease spreading rapidly within a short 
timeframe. 

Previous instances include the SARS virus in 2002, 
which pretentious 8,096 persons and claimed over 770 lives, 
and the Middle East respiratory syndrome Covid-19 (MERS-
CoV) in 2012, ensuing in 858 fatalities and 2,494 infections 
[5]. The ongoing battle against COVID-19, which began 
spreading in December 2019, has led to a global health crisis. 
COVID-19 primarily spreads through indirect or direct 
contact with diseased persons, breathing drops, or airborne 
conduction [6]. Primary symptoms include a high-
temperature, dry cough, and trouble breathing, potentially 
progressing to severe breathing distress or organ failure, and 
in extreme cases, death [7, 8]. 

The rapid and sustained spread of COVID-19 poses 
challenges in our ability to effectively combat the virus, given 
the limited capacity of healthcare professionals and resources. 
This necessitates the development of tools such as contact 
tracing applications, statistical visualizations, dashboards, 
machine-learning methods, and other AI models to aid 
healthcare professionals in managing the pandemic. 
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However, the proposed method has a limitation since it is 
confined to the chest X-ray dataset, and other medical 
datasets could be employed for COVID-19 identification. 
The subsequent sections of this paper are organized as 
follows. Section two reviews pertinent studies in this field. 
Section three outlines the intended proposed system. Section 
four deliberates on the strategy and technique. Section five 
scrutinizes the experimental results and the dataset. Section 
six encompasses a recap of the findings, discussion, and 
analysis, while section seven encapsulates the research 
summary and delineates future avenues for exploration. 

 

2. Related works 
 

Machine-learning has proven to be extremely 
effective in a wide range of picture combination processing 
tasks, including image-analysis [10, 11], image-segmentation 
[9], and image-classification [12]. Image categorization 
requires extracting significant features from images using 
descriptors, image instants [13], and SIFT [14]. These 
collected features are then used in prediction tasks by 
utilizing prediction devices such as support vector machine 
[15]. Traditional image fusion approaches, however, have 
intrinsic drawbacks, such as reduced image quality, increased 
noise in the final fused output image, and impracticality for 
real-time applications where images may blur. Color 
distortion and spectrum degeneration have also been reported 
in color photographs. In contrast to manually built features, 
deep neural network-based system techniques [16] show 
improved performance in image categorization based on 
extracted attributes. Several attempts have been made, 
leveraging machine learning techniques to categorize chest 
X-ray images in COVID-19 patient groups or normal cases. 
For instance, a Convolutional Neural Network (CNN) model 
was developed for spontaneous COVID-19 diagnosis from 
chest X-ray images, achieving a claimed classification 
accuracy of 96.78% using the MobileNet architecture [17]. 
Another study by Simi Larley [18] employed a transfer 
learning strategy, with reported accuracy rates of 97% and 87% 
for InceptionV3 and Inception-ResNetV2, respectively. The 
utilization of orthogonal moments, particularly orthogonal 
quaternion harmonic transformation moments, has proven 
effective in various pattern recognition and image processing 
applications [19] [20]. Recent research focused on 
developing an artificial intelligence-based programmable 
tomography analysis tool for monitoring COVID-19 
progression, using 3D volume assessment to generate a 
"Corona Score" [22]. 

A study by Rasheed et al. [23] explored medical and 
technological aspects in combating the COVID-19 pandemic, 
offering valuable insights for virologists, infectious disease 
researchers, and policymakers. This study delved into the use 
of different technological tools and various artificial 
intelligence methods to aid in the pandemic, including 
predictive diagnostic machine learning techniques, such as 
deep learning. 

Sethy and Behera [24] used X-ray images in 
combination with different CNN models and a support vector 
machine (SVM) for feature identification, highlighting the 
ResNet50 classifier combined with the SVM model as the 
most effective. Several recent COVID-19 studies 
incorporated a variety of CT image deep learning models in 
their analyses [25]. 

State-of-the-art techniques, drawing on deep learning 
approaches and utilizing chest X-ray images, have been 
developed based on research studies [11, 24, 26-30]. While 
machine learning approaches depend heavily on knowledge 
for information selection and extraction, they exhibit limited 
performance compared to deep learning methods. The 
advantages of machine learning methods, such as making the 
most of unstructured data, eliminating the need for 
engineered features, providing superior performance, 
reducing costs, and eliminating the need for data labeling, 
have led to their widespread use in automatically extracting 
crucial characteristics from items of interest for appropriate 
categorization. Notably, Apostolopoulos and Bessiana 
achieved a 97.8% accuracy in COVID-19 categorization with 
the VGG19 architecture [26], and Ozturk et al. demonstrated 
an 87% accuracy in categorizing coronavirus, pneumonia no-
findings, and findings [11]. Sethy and colleagues developed 
a classification system for positive and negative coronavirus 
patients [24]. However, distinguishing coronavirus-caused 
pneumonia patients from other viral-induced pneumonia 
cases is crucial to prevent misdiagnosis, given the differing 
therapeutic approaches required for coronavirus disease. 
Various studies have suggested pulmonic chest infection 
categorization using deep learning methods [31, 32]. The 
current focus of research involves identifying COVID-19 
patients with different pulmonary illnesses, such as edema, 
fibrosis, and effusion. 

 

3. Proposed Method 
 

This section presents a detailed discussion of the 
components and procedures used to create the suggested 
solution. Several critical phases are involved in recognizing 
COVID-19 from chest X-ray images: dataset collecting, data 
pre-processing, dataset categorization, training of models, 
model evaluation and analysis, and model validation and 
enhancement. Figure 1 depicts the system design for COVID-
19 detection using TwoStep-AS and GL (TGL) and its 
components. 

The initial step involves gathering and organizing the 
dataset required for training and model validation. To ensure 
consistency, the collected data undergoes transformations, 
scaling, and normalization. Subsequently, all data is 
categorized based on the model's classification scheme. 
Following that, models are trained and verified using exactly 
the same dataset and context as previously used models. 
Finally, for both the training and testing processes, the trained 
models are evaluated using accuracy metrics and the receiver 
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operational characteristic curve. Figure 1 depicts the TGL 
System's framework. 

 
Fig. 1. TGL Classifer 

Figure 1 depicts the fundamental structure of the TGL 
Diagnosis System. The proposed methodology comprises 
three stages: addressing the imbalance in the raw dataset and 
feature extraction, clustering instances based on their 
proximity to case characteristics using the TwoStep-AS 
algorithm, and performing diagnosis using a GL classifier 
during both the learning and testing phases. The proposed 
approach is designed to classify X-ray images into categories 
such as Pneumonia, COVID-19, or Non-COVID-19. The 
subsequent sections delve into the details of dataset modeling 
and the suggested TGL modeling. 

A. COVID-19 Dataset 

This study employs publicly accessible image 
repositories [33] to conduct its investigation. The dataset 
comprises typical chest X-ray images representing three 
distinct cases: normal, pneumonia, and COVID-19. Dr. 
Joseph Cohen, the curator of a GitHub repository containing 
annotated chest X-ray and CT scan images related to COVID-
19, Acute Respiratory Distress Syndrome (ARDS), SARS, 
and MERS, meticulously captured and documented chest X-
ray images from individuals infected with COVID-19. This 
compilation encompasses 250 confirmed chest X-ray images 
of individuals with COVID-19 viral infections. The Kaggle 
repository was utilized to procure chest X-rays from both 
healthy individuals and patients diagnosed with bacterial and 
viral pneumonia. 

The application of AI-based X-ray screening for COVID-
19 proves effective in both symptomatic and asymptomatic 
cases. However, distinguishing COVID-19 from other lower 
respiratory disorders that may exhibit similar features in X-
ray imaging poses a unique challenge for algorithm 
developers. Dr. Cohen, affiliated with John Hopkins Hospital, 
generously contributed data in the form of JPG X-ray images, 
leading to the formation of a dataset sourced from Kaggle 
Chest X-rays datasets. This dataset facilitated a comparative 
analysis among healthy individuals, patients with bacterial 
pneumonia, and those with COVID-19 viral infection 
pneumonia. The collection incorporates chest images 

obtained from pneumonia patients admitted to hospitals. Dr. 
Cohen [33] established a COVID-19 X-ray image repository 
using publicly available images, consistently updating it with 
contributions from experts. Presently, the database 
encompasses 127 diagnostic X-ray images of COVID-19. 

The National Institutes of Health Chest X-Ray Dataset 
(NIH) stands as another pivotal dataset in relation to COVID-
19. Comprising 112,120 X-ray images with disease 
classifications from 30,805 distinct individuals, this dataset 
was constructed using Natural Language Processing to 
extract illness categories from corresponding radiological 
reports. Approximately 90% of the labels are deemed 
accurate, rendering them suitable for deployment in 
unsupervised learning scenarios. 

B. Feature Extraction Process 

 Statistical Feature 

Upon closer examination of the X-ray images, it becomes 
evident that the predominant visual element is likely the 
excellent texture and statistical combinations. In recent years, 
many researchers have increasingly utilized textural and 
statistical characteristics to address classification challenges, 
and this trend is anticipated to persist. The appeal of such 
utilization lies in its simplicity compared to the labor-
intensive process of software engineering, which demands an 
in-depth understanding of issue classes and methods for 
designing handcrafted descriptors. This function is 
unnecessary. While unmanufactured descriptors have some 
advantages, it is important to recognize that handcrafted 
descriptors have unique properties that can be extremely 
useful for a wide range of classification tasks. In this scenario, 
for example, the advantages of employing handmade features 
outweigh the disadvantages because these methods are more 
potent because they often operate in a more predictable 
manner to capture patterns connected with an issue. When 
handcrafted elements are used instead of unpolished ones, a 
more exact explanation of the patterns formed by the 
handmade characteristics of the photographs is more likely. 
Despite the fact that efforts have turned toward the usage of 
these two groups in feature extraction, this was not always 
the case.  As a result, we can test the two independently and 
then combine the data of numerous experimental groups to 
arrive at a final result. In this way, we can use the 
complementarity among the descriptors' approaches, as 
demonstrated in [34, 35], to keep them from making the same 
mistakes while performing a given classification task. This 
section briefly discusses the adjectives used to describe the 
work. Specific texture descriptors were chosen to perform 
well in general applications or, more specifically, in medical 
picture analysis applications.  The Gray-Level Co-
Occurrence Matrix (GLCM) approach was used for the 
Texture features group. Sebastian et al. [36] defined GLCM 
as a matrix-based method frequently utilized in texture 
investigations to build linkages between pixels. When two 
pixels are nearby, the distance between them and the angle 
between their respective axes are used to calculate the 
relationship. As a result, the GLCM parameters are the 
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space's size and angles. The texture of a picture is quantified 
using GLCM functions, which determine the frequency of 
occurrence of pixel pairs with different values and in a 
specified spatial relationship. The GLCM generates a matrix 
of paired pixels with varying values and in a certain spatial 
relationship, from which statistical measurements are 
extracted. As previously stated, statistical measures of texture 
filter functions, as well as spatial connections of pixels in an 
image, were determined to be insufficient for delivering 
information on shape in texture features. Second-order 
statistics are used to build the GLCM feature set. To compute 
the reflection, the overall average of degrees of likeness 
between pixel pairs in various ways (homogeneity, 
uniformity, etc.) can be used. Pixel separation is one of the 
most crucial characteristics influencing the GLCM's 
discriminating abilities. When examining distance 1, the 
connection between pixel values is reflected (i.e., short-term 
neighborhood connectivity), and the change in distance value 
represents the change in the number of matching pixels. 

 GLCM Features 

GLCM provides functions that correctly capture the 
adjacency connection among pixels in the texture image, as 
described in statistical and structural texture approaches [36]. 
The equations used to extract characteristics from co-
occurrence matrices are chosen based on the qualities to be 
noticed. We chose the four most relevant Haralick texture 
elements for future analysis based on the attributes of the X-
ray imaging collection, which include correlation, 
homogeneity, energy, and contrast. Osman et al. [37] 
elaborate and offer the formulas for computing the statistical 
and GLCM features. 

C. TwoStep-AS Cluster Algorithm 

        Numerous researchers, including [38-40], have 
employed the TwoStep Clustering algorithm across diverse 
domains. In their work, Najjar, A. et al. [38] applied an 
exploratory analytics approach to evaluate healthcare data 
based on the insights from the Smyth research[39]. The 
approach utilized a TwoStep Clustering methodology for 
heterogeneous finite mixture models, encompassing a joint 
mix of multinomial distribution and Gaussian for both 
categorical and numerical inputs. A hidden Markov model 
was incorporated for orders of categorical input. 
Deneshkumar et al. [40] proposed a technique for identifying 
outliers and determining the impact factor in diabetes patients, 
employing a TwoStep Clustering algorithm alongside other 
data mining methods. This study aims to uncover natural 
clusters within a knowledge collection through an 
exploratory technique known as TwoStep-AS Cluster, 
utilizing an algorithm that boasts several advantageous 
characteristics distinguishing it from conventional clustering 
methods. 

 Handling Categorized or Continuous Variables: 
Utilizing a joint multinomial-normal distribution 
when variables are considered independent of one 
another. 

 Automatic Selection of the Number of Clusters: 
Employing an optimization method to automatically 
determine the optimum number of clusters by 
comparing values of a model-choice criterion across 
various clustering solutions. 

 Scalability: Constructing a Cluster Feature (CF) tree 
in the TwoStep-AS method to summarize entries in 
each cluster, facilitating the examination of large 
data files. 

Industries like retail and consumer goods commonly 
apply clustering methods to analyze consumer data, tailoring 
marketing and product development strategies to specific 
consumer segments. The TwoStep-AS method incorporates 
log-likelihood distance, employing a pre-clustering process 
using the CF tree. This tree is traversed to determine the 
closest leaf entry for each record, updating the CF tree 
accordingly. The clustering stage then organizes the sub-
clusters into the appropriate number of clusters using an 
agglomerative hierarchical approach. The log-likelihood 
distance measures the relationship between two clusters, 
utilizing probability functions based on variable values, 
considering categorical variables as multinomial and 
continuous variables as regularly distributed. The distance 
between clusters I and j is expressed as [42]: 

𝑑ሺ𝑖, 𝑗ሻ ൌ  𝜉௜ ൅ 𝜉௝ െ 𝜉ழ௜,௝வ                   
                              
(1) 
Where 
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ଵ

ଶ
logሺ𝜎ො௞

ଶ ൅ 𝜎ොజ௞
ଶ ሻ ൅෌ 𝐸෠జ௞

௄ಳ

௞ୀଵ

௄ಲ

௞ୀଵ
ቇ                

                              
(2) 

 

𝐸෠జ௞ ൌ െ෍
ேഔೖ೗
ேഔ

log ேഔೖ೗
ேഔ

௅ೖ

௞ୀଵ
                  

                                                          
(3) 

  
The formulations encompass the following parameters: 

𝐾஺ denotes the range category number of input features. 

𝐾஻  is the symbolic number category of the input features. 

𝐿௞ is the type number for the kth symbolic feature. 

𝑁௩௜௦ is the number of instances in cluster 𝑣. 

𝑁௩௞௟ is the number of instances in cluster 𝑣 that is similar to 
the lth type of the kth symbolic feature. 

𝜎ො௞
ଶ  is the probable variance of the kth continuous feature for 

all instances. 

𝜎ො௩௞
ଶ  is the probable variance of the kth continuous feature for 

instances in the vth cluster. 

<i,j> is an index representing the cluster molded by merging 
clusters i and j. 
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The distance between clusters i and j would be accurately 
equal to the reduction in log likelihood once the two clusters 
are joint if 𝜎ො௞

ଶ is ignored in the expression for ξv, and 𝜎ො௩௞
ଶ  is 

disregarded in the expression for 𝑣. Including this term helps 
avoid the issue created by 𝜎ො௞

ଶ =0, which would render the 
natural logarithm indeterminate. The technique comprises 
two phases. The first phase automatically defines the number 
of clusters, while the second phase computes Schwarz's 
Bayesian Information Criterion (BIC) for each cluster 
number within a given range. This indicator is then 
employed to determine an initial estimation for the number 
of clusters in the second phase. 

 

𝐵𝐼𝐶ሺ𝐽ሻ ൌ  െ2∑ 𝜉௝ ൅ 𝑚௃ logሺ𝑁ሻ ௃
௝ୀଵ                  

                              
(4) 

𝑚௃ ൌ 𝐽 ቄ2𝐾஺ ൅෌ ሺ𝐿௞ െ 1ሻ 
௄ಳ

௞ୀଵ
ቅ                  

                                            
(5) 
𝑓∗௠௞ ൌ
ቐ
𝑟𝜐. 𝑏𝑖𝑛𝑜𝑚ሺ𝑁,

௙ೖ
ே

                                                  𝑘 ൌ 1

𝑟𝜐. 𝑏𝑖𝑛𝑜𝑚 ൬𝑁 െ ∑ 𝑓∗௠௜
௞ିଵ
௜ୀଵ , ௙ೖ

ேି∑ ௙೔
ೖషభ
೔సభ

൰ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
             

                                           (6) 
         

      The TwoStep Clustering method distinguishes itself 
from traditional clustering techniques through various 
advantageous features. Firstly, it accommodates both discrete 
and continuous variables as clustering inputs, expanding its 
applicability. Secondly, the TwoStep Clustering method 
demands fewer memory resources and exhibits faster 
calculations. Thirdly, it employs statistics as a distance index 
for clustering, simultaneously facilitating the automatic 
reorganization of data with an optimal number of clusters. 
Due to these attributes, the TwoStep Clustering technique is 
selected and explored for integration with the GL algorithm.   

D. Generalized Liner Classifier  

Generalized Linear Classifier is a classification model 
derived from the principles of Generalized Linear Models, 
adapted to handle categorical response variables. It provides 
a flexible framework for modeling relationships between 
predictors and categorical outcomes, making it applicable to 
a wide range of classification tasks. 

It appears there might be a slight misspelling in your 
request. If you're referring to the "Generalized Linear 
Classifier," typically it's known as the "Generalized Linear 
Model (GLM)" or "Generalized Linear Regression (GLR)." 
A Generalized Linear Model is a flexible statistical 
framework that generalizes classical linear regression to 
accommodate various types of response variables and error 
distributions. The Generalized Linear Model extends the 
classical linear regression model to handle situations where 
the response variable is not normally distributed or when the 
relationship between variables is not linear. It consists of 
three main components: 

The response variable, Y, is assumed to follow a 
probability distribution from the exponential family (e.g., 
Gaussian, binomial, Poisson). 

The linear predictor, Xβ, where X represents the predictor 
variables and β is the vector of coefficients. 

A link function, g(μ), connects the expected value of the 
response variable to the linear predictor. It specifies how the 
mean, μ, is related to the linear predictor. Common link 
functions include the identity, logit, and log. 

The general form of a GLM is: 

g(μ)=Xβ                                                                            (7) 

where: 

g() is the link function. 

μ is the expected value of the response variable. 

X is the matrix of predictor variables. 

β is the vector of coefficients. 

Components of the Generalized Linear Classifier: 

If you specifically meant a Generalized Linear Classifier 
(GLC), it could refer to a classifier based on the principles of 
Generalized Linear Models but adapted for classification 
tasks.  

      The suggested approach for diagnosing Covid-19 
involves the integration of a Generalized Linear (GL) method 
with the Two-Step-AS algorithm. This method emulates 
human reasoning by considering multiple perspectives before 
arriving at a final decision. The unanimous decision to adopt 
this approach stems from the necessity for a high level of 
confidence in the real-world implementation of the research. 
This is particularly crucial due to the segregation of Covid-
19 patients into bio-classes and the utilization of various 
decision-making fusion techniques, all extensively discussed 
in the paper. The primary objective is to elevate the learning 
process by grouping together Covid-19 samples with similar 
patterns. This grouping reduces complexity, leading to 
enhanced accuracy in diagnostic interpretation and, 
consequently, in the diagnosis itself.      

  

4. Experimental Design and Dataset 
 

This section delineates the manner in which the 
proposed Generalized Linear (GL) method was assessed and 
how the experiment was carried out utilizing the GL 
technique. According to the methodology we advocate, the 
existing X-ray data is enhanced by include well balanced 
coronavirus images. The goal of this section is to demonstrate 
the negative impact of imbalanced distributions on raw 
dataset performance. It is important to highlight that the 
TwoStep-AS-GL has been adjusted to perform training using 
the best available method parameters. This paper offers a 
Covid-19 diagnosis prediction strategy based on a hybrid 
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TwoStep-AS clustering algorithm and GL method. The goal 
is to improve classification diagnostic precision, reduce 
misdiagnosis mistakes, and boost classification accuracy. As 
a result, a new strategy that mixtures supervised and 
unsupervised learning techniques to generate a integrated 
instructional model is established. The TwoStep-AS 
clustering data structure was thoroughly investigated for X-
ray chest imaging feature extraction utilizing the GL 
classification structure. The GL classifier was used to predict 
positive occurrences of Covid-19, pneumonia, and cases not 
discovered when the cluster findings were utilized as inputs 
to the classification model. The TGL model is used to 
investigate the effects of the qualifying procedure, taking into 
account the huge number of instances linked to the X-ray 
chest data. Two separate situations were used to detect and 
categorize COVID-19 in X-ray images. To begin, the TGL 
technique was trained to classify the X-ray pictures as 
COVID-19, No-Finding, or Pneumonia. In addition, two 
courses were trained in the TGL model: COVID-19 classes 
and No-Findings groups. The suggested model's output was 
tested for difficulties involving triple and binary 
categorization. The random images from this batch were 
utilized to assure balanced findings using a collection of chest 
X-ray images provided by Wang et al. [43], which comprises 
both normal and pneumonia images. After data balancing, the 
formed groups were used to identify each group separately 
using diagnostic cluster studies. 

 

5. Results Discussion and Analysis 
 

        By implementing the TwoStep-AS Cluster, the 
performance of the NN classification algorithm can be 
elevated. This improvement is attributed to the fact that 
continuous features often exhibit enhanced performance 
when discretized [43]. Yang & Webb [44] utilized 
discretization as a technique to address continuous features in 
machine learning methods, enhancing the efficiency of data 
processing and optimizing inductive learning algorithms. The 
TwoStep-AS cluster, initially developed by Chiu et al.[45], is 
specifically designed to handle extensive datasets. Integrated 
into the statistical software SPSS, it serves as a clustering 
algorithm capable of managing both continuous and 
categorical data [46, 47]. Table 1 outlines the specifications 
of the TwoStep-AS model. 

TABLE I.   SPECIFICATIONS OF THE TWOSTEP-AS ALGORITHM 

Minimum Number of Regular Clusters 2 

Maximum Number of Regular Clusters 15 

Feature Importance Method Information Criterion 

Information Criterion Bayesian Information 

Criterion (BIC) 

Distance Measure Log Likelihood 

  As illustrated in Table 1, upon inputting a processed 
dataset, which refers to a quantified dataset, the system 
utilizes TwoStep-AS to generate a class label from the 
processed data. This class label comprises two labels, namely 
cluster-1 and cluster-2, grouped together. Subsequent to the 
definition of each class label, the prior probability of each 
class label is determined for NN calculation, a necessary step 
in the NN calculation process. Table 1 indicates that the 
TwoStep-AS algorithm generates a minimum of 2 and a 
maximum of 15 regular clusters. The TwoStep-AS 
algorithms utilize the BIC Method for Feature Importance 
designation and the Log Likelihood measure as the Distance 
Measure. The quality of the TwoStep-AS model's clustering 
evaluation is presented in Table 2. 

TABLE II.  QUALITY OF THE TWOSTEP-AS ALGORITHM. 

Cluster-

No 

Number of 

Records Goodness Importance 
Cluster1 985 0.89 1.00 
Cluster2 416 -0.25 1.00 

 
Table 2 illustrates the quality of the TwoStep-AS model, 

taking into account the number of records, goodness, and 
record importance. The goodness serves as a metric for 
cluster cohesion and separation. Cluster-1 has 985 records 
with a goodness of 0.89 and a record importance score of 1.00, 
while Cluster-2 has 416 records with a goodness of -0.25 and 
a record importance score of 1.00. The overall model 
goodness is measured by the Average Silhouette Coefficient, 
resulting in a value of 0.76 (interpreted as Good, on a scale 
from -1 to 1 where -1 to 0.2 is Poor, 0.2 to 0.5 is Fair, and 0.5 
to 1 is Good). Additionally, importance is gauged as a 
measure of cluster cohesion, categorized as Poor (0 to 0.2), 
Fair (0.2 to 0.6), or Good (0.6 to 1).  

In conducting an experimental study, a dataset related to 
COVID-19 was obtained for the purpose of data exploration. 
As mentioned earlier, the researchers utilized a tenfold cross-
validation technique for both training and testing the dataset 
in their study. Additionally, a cross-dataset experiment was 
conducted, wherein the GL classifier was employed both 
independently and in conjunction with TwoStep-AS 
clustering results to assess the enhanced outcomes of the 
hybrid approach. The results of the cross-validation 
procedure were computed using equation (8) to yield the 
following diagnostic: 

 

Accuracy ൌ
ሺ୘୒ ା ୘୔ሻ

ሺ୘୒ା୊୔ሻାሺ୘୔ା୊୒ሻ
ൈ 100                              (8)                         

 

The number of COVID-19 cases correctly classified is 
referred to as the True Positive (TP). The number of COVID-
19 instances identified erroneously is indicated by False 
Positive (FP). True Negative (TN) refers to the number of 
non-COVID-19 and pneumonia cases that were misclassified. 
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The number of non-COVID-19 and pneumonia cases 
identified erroneously is represented by False Negative (FN). 

A chest X-ray dataset was evaluated to determine if 
patients were non-COVID-19, pneumonia, or COVID-19. 
The hybrid strategy was used to train and evaluate the dataset 
by merging TwoStep-AS and GL. Using the TwoStep-AS 
clustering algorithm, the dataset was then automatically 
separated into two clusters, each with a different amount of 
occurrences. In this study, the major goal of clustering is to 
identify patterns and structures from chest X-ray data by 
grouping samples with similar patterns. This minimizes the 
study's complexity and improves diagnostic interpretation 
accuracy. Tab.5 displays the results of the training and testing 
operations on the dataset, displaying a set of outcomes 
created by the Ensemble GL classifier method without 
clustering and with clustering using the TwoStep-AS 
algorithm. 

TABLE III.  FEATURE CHARACTERISTICS 

Featur

e N Min Max Mean 

Std. 

Deviation 

Target 1125 1 3 2.33 .667 

F1 1125 58 38747 182.88 1150.987 

F2 1125 25 13462 66.25 399.881 

F3 1125 4 33 5.06 .845 

F4 1125 1 1 .92 .005 

F5 1125 3 14 3.37 .322 
 

The continuous variables in the COVID-19 dataset, as 
analyzed by the GL classifier, offer valuable insights into the 
dataset's characteristics. In Table 3, we observe the results for 
the dependent variable "Class" and the covariates (F1 to F5). 
For the dependent variable "Class," representing instances 
classified into categories (potentially non-COVID-19, 
pneumonia, and COVID-19), the dataset consists of 1125 
observations. The statistics for "Class" include a minimum of 
1, a maximum of 3, a mean of 2.33, and a standard deviation 
of 0.667. These statistics provide a concise overview of the 
continuous covariates, including their range, mean, and 
standard deviation. The wide range observed in variables like 
F1 and F2 suggests significant variability, while F3 appears 
to have a relatively stable range based on its mean of 5.06. 
Higher standard deviations, particularly in F1, indicate 
greater variability among data points.  

We understanding that the distribution and characteristics 
of these continuous variables is pivotal for assessing their 
impact on classification outcomes. Further analyses, such as 
correlation assessments and evaluations of feature 
importance, can offer deeper insights into the relationships 
between these variables and the ultimate classification results. 

This foundational understanding sets the stage for more in-
depth investigations into the dataset's dynamics. 

TABLE IV.  GOODNESS OF FIT 

Measurement Value df 

Value

/df 

Deviance 89.720 1118 .080 

Scaled Deviance 1125.000 1118 - 

Pearson Chi-Square 89.720 1118 .080 

Scaled Pearson Chi-

Square 
1125.000 1118  

Log Likelihood -173.833 - - 

Akaike's Information 

Criterion (AIC) 
363.666 

- - 

Finite Sample 

Corrected AIC (AICC) 
363.795 

- - 

Bayesian Information 

Criterion (BIC) 
403.871 

- - 

Consistent AIC (CAIC) 411.871 - - 

 
The results obtained from classifying the COVID-19 

dataset using the GL classifier are outlined in the table 4, 
encompassing various goodness-of-fit metrics and 
information criteria. Specifically, the deviance is reported as 
89.720, with Degrees of Freedom (df) being 1118, resulting 
in a Value/df ratio of 0.080. Deviance acts as an indicator of 
the model's fit, where lower values signify a better alignment 
with the data. In this context, the achieved deviance value is 
relatively low, indicating a favorable fit.  Linking to the 
subsequent metric, the Scaled Deviance Value is recorded as 
1125.000, with df being 1118. Scaled deviance, similar to 
deviance, assesses goodness of fit while considering the scale 
of the response variable. The relatively elevated value 
suggests a possibility for enhancing the model fit.  Moving on, 
the Pearson Chi-Square is documented with a value of 89.720, 
df of 1118, and a Value/df ratio of 0.080. Similar to deviance, 
the Pearson Chi-Square evaluates the concordance between 
observed and expected values. A low value/df ratio is 
indicative of a favorable fit.  Transitioning to the Log 
Likelihood, it is indicated by a value of -173.833. This metric, 
representing the logarithm of the likelihood function, seeks 
higher values for improved fit. The negative value is aligned 
with the logarithmic nature of the measurement.  Next, 
Akaike's Information Criterion (AIC) is reported with a value 
of 363.666. AIC aims to strike a balance between fit and 
model complexity, where lower values suggest a favorable 
trade-off between fit and simplicity.  Similarly, the Finite 
Sample Corrected AIC (AICC) is documented with a value 
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of 363.795. AICC, adjusted for small sample sizes, parallels 
AIC, and lower values are considered desirable for effective 
model evaluation.  Moving on to the Bayesian Information 
Criterion (BIC), it is presented with a value of 403.871. 
Similar to AIC, BIC penalizes model complexity, and lower 
values indicate a superior model. BIC imposes a more 
stringent penalty for complexity.  Finally, Consistent AIC 
(CAIC) is recorded with a value of 411.871. CAIC, which 
takes into account both fit and complexity, favors lower 
values for enhanced model performance. 

The collective metrics imply that the GL classifier model 
exhibits a reasonable fit to the COVID-19 dataset. 
Nevertheless, there exists potential for improvement, and 
further refinement of the model or exploration of alternative 
approaches is worth considering. 

The Omnibus Test provides strong evidence that the GL 
classifier, when applied to the COVID-19 dataset with the 
specified predictor variables, offers a statistically significant 
improvement in fit over an intercept-only model. This 
supports the validity and utility of the model in capturing and 
explaining the patterns in the data related to the classification 
of COVID-19 cases. With the Omnibus Test measurement, 
the Likelihood Ratio Chi-Square has been assesses whether 
there is a significant difference between the fitted model (GL 
classifier with predictor variables) and an intercept-only 
model (a model with no predictors).  

The high value of 1932.649 and a very low p-value 
(0.0005) indicate that there is a significant difference between 
the two models. In other words, the inclusion of predictor 
variables in the GL model significantly improves its fit 
compared to a model with no predictors. The Omnibus Test 
supports the notion that the GL classifier, incorporating the 
specified predictor variables, is a statistically better fit for the 
COVID-19 dataset than a model without predictors. The GL 
classifier, as configured with the listed predictor variables, is 
deemed useful for explaining and predicting the variability in 
the dependent variable (Class), as evidenced by the 
significant Likelihood Ratio Chi-Square. The estimation 
parameters is presented in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

TABLE V.   PARAMETER ESTIMATES 

 

The "Parameter Estimates" section furnishes essential 
details concerning the estimated coefficients, standard errors, 
confidence intervals, and hypothesis tests for each variable in 
the GL classifier model applied to the COVID-19 dataset. 
The Estimate (B) is noted as -36.972, with a Std. Error of 
17.6338, a 95% Wald Confidence Interval of (-71.533, -
2.410), a Wald Chi-Square of 4.396, df: 1, and a significance 
level (Sig.) of 0.036. Linking to the interpretation of the 
intercept, which represents the estimated log odds of the 
reference category (Class 1), the estimate of -36.972 suggests 
a significant negative association with the dependent variable. 
The confidence interval excluding zero indicates statistical 
significance. Moving to F1, with an Estimate of 0.001, Std. 
Error of 0.0004, a 95% Wald Confidence Interval of (-
5.010E-5, 0.002), a Wald Chi-Square of 3.381, df: 1, and Sig.: 
0.066, the coefficient implies a small positive effect, with a 
p-value suggesting marginal significance. The Transitioning 
to F2, where the Estimate is 0.004, Std. Error is 0.0010, a 95% 
Wald Confidence Interval of (0.002, 0.006), a Wald Chi-
Square of 15.752, df: 1, and Sig.: 0.000, the positive 
coefficient and statistical significance (Sig. = 0.000) indicate 
a strong positive impact on the log odds. By examining F3 
with an Estimate of -11.110, Std. Error of 3.8236, a 95% 
Wald Confidence Interval of (-18.604, -3.616), a Wald Chi-
Square of 8.442, df: 1, and Sig.: 0.004, the negative 
coefficient signifies an association with lower log odds, and 
the p-value (Sig. = 0.004) indicates statistical significance. 
For F4, with an Estimate of 25.107, Std. Error of 26.1258, a 
95% Wald Confidence Interval of (-26.099, 76.313), a Wald 
Chi-Square of 0.924, df: 1, and Sig.: 0.337, the positive 
coefficient is not statistically significant, as the p-value is 
0.337. Considering F5, which scores an Estimate of 21.576, 
Std. Error of 8.2198, a 95% Wald Confidence Interval of 
(5.465, 37.686), a Wald Chi-Square of 6.890, df: 1, and Sig.: 
0.009, the positive coefficient is statistically significant (Sig. 
= 0.009), suggesting a positive association. The AS-
TwoStep=Cluster-1 obtained an Estimate of -1.179, Std. 
Error of 0.0170, a 95% Wald Confidence Interval of (-1.213, 
-1.146), a Wald Chi-Square of 4790.478, df: 1, and Sig.: 
0.000. The TwoStep-AS clustering variable (AS-TwoStep) 
for Cluster-1 is highly significant (Sig. = 0.000), indicating 
its crucial role in the model. AS-TwoStep=Cluster-2 is 
recorded with an Estimate of 0 (set to zero because this 
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parameter is redundant). The Scale feature achieved an 
Estimate of 0.080, Std. Error of 0.0034, a 95% Wald 
Confidence Interval of (0.073, 0.087). The scale parameter 
provides information about the dispersion of the errors. We 
conclude that the intercept, F2, F3, F5, and AS-TwoStep 
variables exhibit significant associations with the dependent 
variable (Class), influencing the odds of COVID-19 
classification. F1, F4, and the redundant Cluster-2 variable 
are not statistically significant contributors to the model. The 
positive coefficient for F2 suggests an increase in the odds of 
COVID-19 classification, while the negative coefficient for 
F3 implies a decrease. F5 exhibits a positive association, 
indicating increased odds. The AS-TwoStep clustering 
variable for Cluster-1 strongly influences the model, 
affirming the effectiveness of the TwoStep-AS clustering 
method in COVID-19 classification. 

Another investigation, utilizing the NIH dataset, was 
carried out to scrutinize instances as either COVID-19 or 
non-COVID-19. The TGL model, coupled with several 
classifier methods, was utilized in the training and evaluation 
process to showcase the efficiency of the suggested model. 
Additionally, the accuracy of classification using the hybrid 
technique is documented in Table.6. 

TABLE VI.  PERFORMANCE ON THE TGL AND OTHER CLASSIFIERS 
METHODS. 

Method Accuracy 
ANN 0.60 

Support Vector Machine 0.65 
Bayesian Network 0.69 

C51-classifier  0.74 
TGL Model 0.89 

 
Figure 2 illustrates a comparison between the TGL 
model and currently employed methods. The 
proposed TGL method demonstrated a notable 
accuracy score of 0.90.6 in its application. 
 

 
 

Fig. 2. Comparison between the TGL and other based methods  

 

6. Conclusion and Future Directions 
 

       The focus of this study is on developing a novel GL 
method based on the TwoStep-AS clustering model (TGL) 
for detecting coronavirus and pneumonia cases. Clustering 
techniques play a crucial role in various domains that involve 
extensive datasets, aiming to unveil concealed patterns within 
the data. However, traditional clustering algorithms face 
challenges in effectively handling datasets containing both 
numerical and categorical attributes, common in real-world 
data. We demonstrated that the TwoStep-AS technique, 
known for its simplicity and automatic determination of the 
optimal number of clusters, can effectively address this issue. 

In the initial phase of diagnosis using TGL, clinical cases 
undergo categorization into pneumonia, COVID-19, and 
normal cases. During the subsequent stage, given that Covid-
19 stems from a virus, instances are further segregated into 
three categories: positive COVID-19, pneumonia, and 
negative COVID-19 (normal). The aim of the TGL method is 
to furnish a swift, systematic, and dependable computer-
assisted solution for characterizing Covid-19 cases in patients 
undergoing preliminary screening with a chest X-ray scan 
upon admission to hospitals. 

Comprehensive assessments have been carried out to 
showcase the effectiveness of the proposed approach, 
employing both learning and testing processes, and a tenfold 
cross-validation methodology has been utilized to illustrate 
the efficacy of TGL. Additionally, various tests have been 
executed to underscore the superiority of TGL in pinpointing 
Covid-19 cases compared to other cutting-edge methods for 
Covid-19 detection. Subsequent initiatives may involve 
harnessing advanced CNN techniques and diverse data 
mining models to refine the precision of detecting positive 
Covid-19 cases from chest X-ray and CT-scan images. 
Contemplation might also be given to adjusting the 
dimensions of the provided images, and the integration of 
machine learning-based image segmentation could further 
enhance performance. Furthermore, the exploration of 
optimized methods based on regression and classification 
algorithms will be undertaken to augment the predictive 
capability of the approach in diagnosing COVID-19. 
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