
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

34

Manuscript received December 5, 2024
Manuscript revised December 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.12.4

Transferring and Updating Individual Package
for Linux-based IoT Devices by Calculating Connection Speed

Hoai-Nam Nguyen1† and Truong-Thang Nguyen2††
 nguyenhoainam@ioit.ac.vn ntthang@ioit.ac.vn

Thu-Nga Nguyen Thi 3††, Manh-Dong Tran 4††, Ba-Hung Tran5††

 nttnga@ioit.ac.vn dongtm@ioit.ac.vn tbhung@ioit.ac.vn

Institute of Information Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Summary
The updating IoT device issue is one of the hot topics in the IoT
development field in recent years. Up to 2020, one of the popular
solutions is updating the whole operating system to reduce the risk
of failure and recover the device faster. However, that solution is
not always suitable, especially in the case of low connection speed
and limited storage. For that reason, in this paper, we would like
to suggest another solution that allows uploading and updating an
individual package for Linux-based IoT devices by calculating
connection speed.
Keywords:
IoT, updating, automation, network, Linux.

1. Introduction

1.1. The importance of updating IoT devices
According to Security Today [1], IoT refers to

connected physical and digital components. Each IoT
component has a Unique Identifier (UID) that makes it
recognizable. The number of IoT devices is increased every
year. In 2018, there were 7 billion IoT devices. In 2019, the
number increased to 26.66 billion. In 2020, the estimated
number is 31 billion. Every second there are 127 new IoT
devices connected to the Internet.

In 2020, there are 10 IoT risks to watch out as the following:

● Weak password: In a lot of cases the users forgot to
change the default simple password.

● Insecure or unneeded network services: Those services
are installed on the device and may expose sensitive
data.

● Insecure ecosystem interfaces: External interfaces
connecting to the device may cause the devices to be
compromised.

● Use of insecure or outdated components: Those
components that were not scanned for vulnerabilities
make it easier for the hacker to access the devices.

● Insufficient privacy protection: Private information that
is stored in the device is not protected.

● Insecure data transfer and storage: Lack of access
control and encryption while the data is transferred and
stored.

● Lack of device management: The devices are not
managed remotely which leads to a lack of updates.

● Insecure default settings: The default settings are not
changed that make the devices easy to be exploited.

● Lack of physical hardening: That issue makes the
hacker easier to access and take control of the devices.

One of the solutions for those 10 above risks is keeping
the IoT devices up to date. However, manually updating IoT
a large number of IoT devices takes a lot of time and has
many potential risks. That issue led to a demand for
producing solutions to update automatically.

1.2. Some existing solutions

Up to now, many solutions that can be categorized into
two groups:

Commercial solutions: Most of the commercial solutions
are made to serve the devices of a manufacturer. The
advantage of that is the solution are optimized because the
manufacturers understand most about the characteristics of
the devices. The disadvantage of that is it cannot apply to a
group of different brands of devices. However, some of the
solutions became open and expanded to serve a wide range
of devices.

Some of the commercial solutions:

● mender.io [2]: Mender allows the developers to mitigate
risks at a large scale based on a predefined update
deployment plan. The advantages of this solution are:
(i) Provide source code on GitHub; (ii) Easy to use UI;

https://doi.org/10.22937/IJCSNS.2020.20.10.01
mailto:nguyenhoainam@ioit.ac.vn
mailto:dongtm@ioit.ac.vn
mailto:dongtm@ioit.ac.vn

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

35

(iii) Provide package for updating. The disadvantage
of this solution is not all the updates support the roll-
back strategy.

● balena.io [3]: The previous name is Resin. Balena is a
complete tool that helps the developers build,
implement and manage connected devices using
Linux. The advantage of Balena is it supports small
size update to reduce the risk of power. The
disadvantage of Balena is the update contains the
whole operating system that might not be suitable for
unstable network connection.

Open-source solution: The advantage is they serve a lot of
brands, however, the disadvantages are the optimization
and a complete solution. Most of them only have some
functions for specific purposes.

Some of the open-source solutions:

● Ansible [4]: Ansible is a Python-based solution that
helps the developer build the automation tasks. The
advantages of Ansible are: (i) Agentless architecture
reduces the maintainance tasks on the devices because
there is no client application installed on the devices;
(ii) Connection using SSH allows Ansible to connect
to a large type of device. The disadvantage of Ansible
is there is no direct function for updating the device.
For that reason, the developers have to write
themselves the updating part.

● eNMS [5]: eNMS is an enterprise vendor-agnostic
network automation platform. The advantage of the
solution is it has the pre-defined flows to manage the
devices. The disadvantage of the solution is it does not
contain the updating flow, it only contains the backup
flow. Therefore the developers have to define or build
their updating flow.

1.3. Updating IoT device issues

All the solutions have to meet the following
requirements [6]:

● Secure: Ensure the update is made via an encrypted
connection.

● Authentication: Only suitable roles have the right to
execute the update.

● Robust: Ensure the devices behave normally after the
update.

● Atomic: The update is either installed completely or not
at all.

● Fail-safe: The update has a roll-back strategy.

● Monitoring: The update status has to be monitored and
logged.

Besides, transferring and updating solutions for IoT devices
have to face the following issues:

1. The updating process might be disturb when the network
has problems.

2. The transferred data is too large that might leads to the
updating process to retry many times until the transferred
data is completed.

3. The developers have to customize the updating module
for IoT devices with the situation that not all the
organizations have suitable skillful developers.

4. The lack of a validating and evaluation process to make
sure the update is completed in the right way and to make
sure the devices can be recovered in failure cases.

With the above issues, we focus on solving issue (1) and
issue (2) that ensure the update package is transferred
completely in an unstable network and reduce the retry
times.

2. Technical Concept

The proposed transferring and updating process is as
the following:

Fig 1. Updating process

Step 1: Prepare the updating file and generate MD5 hash of
the file to validate after the file is transferred.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

36

Step 2: Transfer the updating file to each device.

- Evaluating the connection speed.
- Split the file if required to have the transfer time less than
the timeout value (normally 30 seconds).
Step 3: Perform the loop:

- If the transfer is successful, validate the file via MD5
checksum.
- If the transfer is unsuccessful, split the file into smaller
pieces.
Step 4: Validate the current version of the installed package.

Step 5: Update the package.

Step 6:

- If the update is completed successfully, inform the user.
- If the update fails, restore the previous package version.

3. Implementation

In this paper, we use Spatie SSH, a Laravel package to
connect to the remote device. Spatie SSH is a package based
on Symfony’s Process. The default syntax to connect to a
device is:

Ssh::create('user', 'host')->execute('command');

The advantage of this package is it can run asynchronously
so we can inject the sub-sequence actions after any
command is executed. In addition, the package supports
copying files from a localhost to a remote host without
using a direct “scp” command in the “execute” function.

Below is a custom private function that we use for general
SSH commands in the mentioned steps to upload and update
a package.

private function execute_ssh_command($device,

$commands){

 return Ssh::create($device->username,

$device->host)

 -

>usePort($device->port)

 -

>disableStrictHostKeyChecking()

 -

>execute($commands);

}

3.1 Checking MD5 hash of the upload file

$commands = ['md5sum ' .

env('REMOTE_UPLOAD_PATH') . $device-

>username . '/' . str_replace("uploads/", "",

$task->file)];
Log::debug('Commands' . implode(",",

$commands));
$remoteChecksumResult = explode(' ', $this-

>execute_ssh_command($device, $commands)-

>getOutput());
$checksumResult = $remoteChecksumResult[0];
Log::info('MD5 checksum: ' . $checksumResult);

3.2. Check the current version of the package on
remote server

$commands = [$device->package_name . '

version'];

Log::debug('Commands' . implode(",",

$commands));

$version = $this->execute_ssh_command($device,

$commands)->getOutput();

Log::info('Current Version: ' . $version);

3.3. Update the package on a remote device with the
condition that the uploaded file has the same MD5
hash as the file on the server.

if (md5_file($task->file) == $checksumResult)
{
$commands = ['sudo apt install ./' .

str_replace("uploads/", "", $task->file)];
$update = $this->execute_ssh_command($device,

$commands)->getOutput();
Log::info('Update result: ' . $update);
}

4. Evaluation
To evaluate the concept, we have built a lab using

GNS-3 (Graphical Network Simulator-3) with the endpoint
is the IoT device.

Below is the network model created by using GNS3.
For demonstration purposes, we only create 1 server (for
transferring the update file) and 4 IoT devices. The number
of IoT devices in real situations will be much higher than
that, however, the concept is using “worker” function of
Laravel, a PHP framework that allows the upgrade tasks can
be scheduled and run asynchronously without waiting for
one by one to be finished. However, there is a pre-defined

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

37

number of failed updates that the “worker” should be
stopped and run the roll-back step.

Fig 2. GNS-2 device model

The operating system used for the IoT devices is Raspberry
Pi OS (the previous name is Raspbian). This operating
system is optimized for ARM-based chipset so that it can
run in a limited capacity device.

Fig 3. Raspberry Pi OS Console

5. Conclusion
In this paper, by using the concept of “testing

connection - splitting - uploading - evaluating”, we solved
the issue of updating the Linux-based IoT devices in a
specific case of low speed and unstable network connection.
In comparison to the method of updating the whole “image”
of the operating system, updating the whole “image” can
reduce the problem of failure by a faster recovery (roll-
back) process. However, we can also clone the operating
system and install into a different partition of the device,
implement the updating process, configure the boot loader
to use the new partition and do the roll-back step to switch
back to the previous partition. That is our future step to
optimize the roll-back step.

Acknowledgments

We would like to thank CS'20.10 project of the Institute of
Information Technology, Vietnam Academy of Science and
Technology that has provided funding for the study.

References
[1] The IoT Rundown For 2020: Stats, Risks, and

Solutionshttps://securitytoday.com/articles/2020/01/13/the-
iot-rundown-for-2020.aspx

[2] mender.io https://mender.io
[3] balena.io https://www.balena.io/
[4] Ansible https://www.ansible.com/
[5] eNMS https://github.com/eNMS-automation/eNMS
[6] Software update for IoT

https://elinux.org/images/f/f5/Embedded_Systems_Software
_Update_for_IoT.pdf

[7] OTA update solutions - The ultimate guide
https://witekio.com/ota-update-solutions-the-ultimate-guide/

[8] Test ssh connection speed
http://www.alecjacobson.com/weblog/?p=635

[9] Install Raspbian Desktop on a Virtual Machine
https://roboticsbackend.com/install-raspbian-desktop-on-a-
virtual-machine-virtualbox/

[10] GNS3 Lab http://internetoftheo.blogspot.com/2019/01/gns3-
lab.html

[11] Laravel PHP Framework https://laravel.com/
[12] A lightweight package to execute commands over an SSH

connection https://github.com/spatie/ssh

Hoai-Nam Nguyen received the BSc.
in University of Engineering and
Technology of Vietnam National
University in 2009, MSc. in Hof
University of Applied Science, Germany
in 2015. Currently working at the Institute
of Information Technology of Vietnam
Academy of Science and Technology.
Research fields: Cybersecurity, software
engineering.

Truong - Thang Nguyen received a Ph.D.
in 2005 at the Japan Advanced Institute of
Science and Technology (JAIST), Japan.
Currently working at the Institute of
Information Technology, Vietnam
Academy of Science and Technology.
Research fields: software quality assurance,
software verification, program analysis.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.12, December 2024

38

Thu-Nga Nguyen Thi received MSc.
in University of Information and
Communication of Thai Nguyen.
Currently working at the Institute of
Information Technology of Vietnam
Academy of Science and Technology.
Research fields: Cyber security, crypto.

Manh-Dong Tran received a M.S. degree
in 2013 at the University of Engineering and
Technology, Vietnam National University,
Hanoi. Currently working at the Institute of
Information Technology, Vietnam
Academy of Science and Technology.
Research fields: software quality assurance,
software verification, program analysis.

Ba-Hung Tran receivved a Master degree
in 2014 at Military Technical Academy
working at the Institute of Information
Technology. Research fields: Network
Infrastructure, software verification,
program analysis.

