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Abstract 
Due to its complexity and high diagnosis and treatment costs, 
heart attack (HA) is the top cause of death globally. Heart failure's 
widespread effect and high morbidity and death rates make 
accurate and fast prognosis and diagnosis crucial. Due to the 
complexity of medical data, early and accurate prediction of HA 
is difficult. Healthcare providers must evaluate data quickly and 
accurately to intervene. This novel hybrid approach predicts HA 
using Long Short-Term Memory (LSTM) networks, Deep belief 
networks (DBNs) with attention mechanism, and robust data 
mining to fill this essential gap. HA is predicted using Kaggle, 
PhysioNet, and UCI datasets. Wearable sensor data, ECG signals, 
and demographic and clinical data provide a solid analytical base. 
To maintain consistency, ECG signals are normalized and 
segmented after thorough cleaning to remove missing values and 
noise. Feature extraction employs complex approaches like 
Principal Component Analysis (PCA) and Autoencoders to pick 
time-domain (MNN, SDNN, RMSSD, PNN50) and frequency-
domain (PSD at VLF, LF, HF bands) characteristics. The hybrid 
model architecture uses LSTM networks for sequence learning 
and DBNs for feature representation and selection to create a 
robust and comprehensive prediction model. Accuracy, precision, 
recall, F1-score, and ROC-AUC are measured after cross-entropy 
loss and SGD optimization. The LSTM-DBN model outperforms 
predictive methods in accuracy, sensitivity, and specificity. The 
findings show that several data sources and powerful algorithms 
can improve heart attack predictions. The proposed architecture 
performed well on many datasets, with an accuracy rate of 
96.00%, sensitivity of 98%, AUC of 0.98, and F1-score of 0.97. 
High performance proves this system's dependability. Moreover, 
the proposed approach is outperformed compared to state-of-the-
art systems. 
Keywords  
Heart Data mining; Heart attack prediction; Machine learning; 
Deep learning; Long short-term memory; Deep belief networks; 
Autoencoder 
 

I. INTRODUCTION 
T Medical research focuses on heart attack risk (HAR) 

prediction since it can minimize mortality and morbidity of 
cardiovascular disease [1]. Heart attacks (HAs) occur when 
blood flow to the heart muscle is disrupted, causing tissue 
damage [2]. Despite it, the HAs are still the top cause of 
mortality worldwide, requiring better predictive metrics for 
early detection and treatment [3]. The HAs prediction 
tackles a significant healthcare issue [4] and promises to 
improve patient outcomes by prompt prevention and 

treatment. Millions of people worldwide are diagnosed with 
HAs. The WHO reports that cardiovascular disorders, 
including heart attacks [5], are the leading cause of death. 
Even if HAR prediction is crucial, this domain challenges 
several obstacles. An accurate prediction  is difficult due to 
their complexity and numerous risk factors.  

New advances in machine learning (ML) and data 
mining [6] are trying to solve these problems. HAR 
prediction has expanded with large-scale wearable sensors 
and clinical record data. Effectively using this data involves 
complex preprocessing to handle noise [7], inconsistencies, 
and missing values. Feature selection (FS) helps improve 
model performance by selecting the most important factors 
for heart attack prediction. Using the strengths of different 
FS approaches in a hybrid approach can improve outcomes. 
High prediction accuracy in HAR requires the right ML 
model. Long-short-term memory (LSTM) networks and 
Deep Belief Networks (DBNs) are able to capture 
complicated temporal patterns and deep characteristics from 
multimodal and large datasets. If we combine these DL 
models with enhanced data mining, then these models are 
able to make accurate predictions. A successful ML model 
for HAR prediction must perform well on training and 
validation datasets to be generalizable. This requires many 
hard steps to perform validation. A complete HAR 
prediction system must include multimodal data with 
clinical datasets. In practice, an improved HAR prediction 
relies on huge algorithmic innovation. In hybrid techniques, 
LSTM networks, DBNs, and other sophisticated methods 
can capture temporal dependencies and complicated feature 
interactions. 

It is required to evaluate HAR prediction models 
compared to more than accuracy is needed. A 
comprehensive strategy is required to assess through various 
statistical measures. These measurements show the model's 
heart attack prediction capabilities. Iterative testing and 
validation are needed to develop these models and fix issues. 
This work uses advanced ML models and data 
preprocessing to bridge gaps in HAR prediction methods. 
The hybrid technique shows that combining numerous data 
sources and sophisticated algorithms can predict HAR with 
high accuracy. This system's accuracy, interpretability, and 
explanation are essential for clinical applications and 
predictive trust. At last, the HAR prediction is innovative 
solution in cardiovascular disease treatment, promising 
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early and precise diagnosis. Predictive healthcare is entering 
a new age with powerful ML algorithms and large datasets 
to address one of the world's most significant health issues.  

The contributions emphasize the study's original hybrid 
model construction, complete data integration, sophisticated 
feature selection, and clinical application of the prediction 
system. 

1) The new model combines LSTM, DBN and 
attention networks with enhanced data mining 
to improve heart attack risk prediction. This 
updated algorithm integrates the attention 
mechanism to potentially improve the model’s 
focus on critical parts of the input sequence, 
enhancing performance in predicting heart 
attack risk. 

2) Use varied datasets to predict HRs with 
improved preprocessing approaches for 
accurate predictions. 

3) Implementation of a multi-faceted feature 
selection approach, and embedded-based 
techniques to improve model performance by 
identifying the most relevant predictors. 

4) Demonstration of superior accuracy, sensitivity, 
specificity, and AUC compared to traditional 
models, along with enhanced explainability and 
interpretability for clinical applicability and 
improved patient outcomes. 

The organization of the subsequent sections is outlined 
as follows: Section 2 reviews the relevant literature. In 
Section 3, this paper describes the methodologies and the 
proposed model framework. Section 4 analyzes the 
empirical findings. Finally, Section 5 concludes the paper 
and discusses possible directions for future research. 

II. LITERATURE REVIEW 

Several machine-learning techniques have been 
explored for heart attack prediction [8]. While conventional 
models like logistic regression, decision trees, and SVM 
have shown mixed results, the potential of deep learning 
models like CNNs and RNNs to capture complex data 
patterns and improve prediction accuracy is promising. 
Despite their struggles with feature selection and 
interpretability, recent research indicates that hybrid models, 
incorporating multiple algorithms and feature selection 
approaches, can further enhance prediction accuracy. 

The authors used a two-tier approach to scale IoT health 
monitoring data storage and processing in the article [9]. 
The results showed better data processing and management. 
The system's cloud storage requirement raises latency and 
data security issues. In [10], the authors used improved 
SVM configurations to predict cardiac disease accurately. 
Despite encouraging results, the study's concentration on 
SVM may ignore other practical machine learning methods. 
The authors used genetic algorithms, particle swarm 

optimization, SVM, and Random Forest in the study [11]. 
This method improved accuracy, but its computing 
requirements and sophisticated optimization procedure may 
restrict its usefulness. 

The study [12] also presented a hybrid model combining 
decision trees, SVM, and neural networks to improve 
prediction. However, integrating various strategies 
complicated the model and needed significant computer 
resources. Study [13] used feature selection approaches with 
classifiers like k-NN and SVM to improve accuracy. The 
critical issue was generalizing feature selection across 
datasets. The authors improved prediction accuracy and 
resilience using ensemble approaches like bagging and 
boosting [14]. While the technique was accurate, ensemble 
models' complexity can increase training time and 
processing needs. The authors compared CNNs and LSTMs 
against classical approaches [15]. Deep learning models 
performed well. However, their computing costs and data 
preparation were drawbacks. 

Real-time cardiac disease prediction using IoT data was 
a significant focus in [16], overcoming latency challenges 
with real-time monitoring systems. The study demonstrated 
improved real-time prediction, although the integration and 
processing of data sources presented significant challenges. 
In [17], data mining was used for feature extraction, 
combined with machine learning for classification, to 
enhance prediction accuracy. While the combined strategy 
was complex and required substantial data preparation, it 
represents a significant step forward in the field of cardiac 
disease prediction. 

In [21], a scalable three-tier architecture for processing 
IoT sensor data improves data management and predictive 
modeling. This technique was limited by its use of Apache 
HBase and Apache Mahout, which may be vague. The 
study [22] optimized SVM algorithms using genetic and 
particle swarm optimization, attaining 93.08% accuracy. 
Optimization difficulty and processing expense were the 
key constraints. Additionally, [23] proposed a CNN-based 
multimodal illness risk prediction method with 94.8% 
accuracy. Structured and unstructured data were needed for 
the technique, which may not be accessible in all contexts. 
In [24], feature selection and data mining were used to 
predict heart disease with 87.4% accuracy using a hybrid 
Vote classifier. The diversity in feature relevance across 
datasets limited generalizability. 

An IoMT framework using Modified Salp Swarm 
Optimization (MSSO) and an Adaptive Neuro-Fuzzy 
Inference System (ANFIS) achieved 99.45% accuracy in the 
article [25]. The MSSO-ANFIS model's complexity and 
considerable parameter adjustment were drawbacks. In [26], 
Recursion Enhanced Random Forest with an Improved 
Linear Model (RFRF-ILM) achieved 96.6% accuracy. 
Recursion and model training were computationally 
expensive, limiting this technique. LSTM and Deep Belief 
Networks (DBN) predicted arterial events with 88.42% 
mean accuracy in the study [27]. Practical training required 
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big datasets and computer resources, which limited the 
study. A study [28] showed that logistic regression had a 
modest predictive value and performed well. Logistic 

regression had modest predictive accuracy, which may need 
more for many diagnostic applications. The authors used the 
study's Hyper-Opt Bayesian optimization and T-Pot  

TABLE I.  STATE-OF-THE-ART LITERATURE REVIEW WITH LIMITATIONS TO PREDICT HEART ATTACKS USING DATA MINING TECHNIQUES 

  

Citation Purpose Methods Result Limitations 
[22] Enhance performance of 

traditional ML algorithms 
for CAD prediction. 

Tested ten ML algorithms; used SVM 
with genetic and particle swarm 

optimization; N2Genetic optimizer. 
Cross-validation used for optimization. 

N2Genetic-nuSVM achieved 
93.08% accuracy and 

91.51% F1-score. 

May be specific to CAD 
prediction; optimization 
techniques may not be 
universally applicable. 

[23] Improve prediction of 
chronic disease using 

structured and unstructured 
data. 

Latent factor model for missing data; 
CNN-based multimodal prediction 

algorithm. 

Achieved 94.8% prediction 
accuracy. 

Focuses on cerebral infarction; 
may not generalize to other 

chronic diseases or data types. 

[24] Identify significant features 
for heart disease prediction 

and improve model 
accuracy. 

Various feature combinations and 
classification techniques (k-NN, 

Decision Tree, Naive Bayes, LR, SVM, 
Neural Network, Vote). 

Best-performing model 
(Vote) achieved 87.4% 

accuracy. 

Limited by the choice of 
features and classification 

techniques; may not capture all 
relevant features. 

[25] Enhance heart disease 
prediction accuracy using 

MSSO-ANFIS framework. 

Modified Salp Swarm Optimization 
(MSSO) and Adaptive Neuro-Fuzzy 

Inference System (ANFIS); Levy flight 
algorithm for optimization. 

MSSO-ANFIS achieved 
99.45% accuracy and 

96.54% precision. 

MSSO-ANFIS may be 
complex and computationally 

intensive; requires specific 
optimization. 

[26] Improve cardiovascular 
disease detection with 

enhanced Random Forest. 

Recursion enhanced Random Forest 
with an Improved Linear Model 

(RFRF-ILM); various feature 
combinations and classification 

methods. 

Achieved 96.6% accuracy, 
96.8% stability, and 96.7% 

F-measure ratio. 

High accuracy may depend on 
specific dataset and feature 

selection methods. 

[29] Compare performance of 
various machine learning 
optimization techniques. 

Bayesian optimization, random forest, 
support vector machines, genetic 

algorithms, Optuna. 

Bayesian optimization with 
SVM achieved highest 

accuracy (90%). 

Different optimization 
methods may have varying 

effectiveness based on dataset 
and context. 

[30] Improve heart attack 
prediction from imbalanced 

data. 

Undersampling-clustering-
oversampling (UCO) algorithm; applied 

to Medical Information Mart for 
Intensive Care III dataset. 

Random forest achieved 
70.29% accuracy and 

70.05% precision. 

May require tuning for specific 
datasets; performance may 

vary. 

[31] Train a model with essential 
attributes for heart disease 

prediction. 

Stack generalization with various ML 
classifiers (Logistic Regression, 

Random Forest, etc.) and SMOTE for 
balancing. 

Support vector machine 
achieved 93.07% accuracy; 

stacked generalization 
achieved 97.2% accuracy. 

Dependent on quality of 
balanced dataset; may not 

generalize to all heart disease 
types. 

[32] Address inter-dataset 
discrepancies for better ML 

performance. 

Handling imbalance using SMOTE-
Tomek; feature selection with RF; PCA 

for feature extraction. 

RF produced up to 100% 
accuracy in some setups; 

effective inter-dataset 
performance. 

Preprocessing may be 
complex; effectiveness can 
vary with different datasets. 

[33] Develop an automated heart 
disease prediction model 
using advanced features. 

Improved Z-score normalization; 
feature extraction with entropy, 

statistical features, and information 
gain; Improved Quantum CNN 

(IQCNN) for prediction. 

IQCNN achieved 0.91 
accuracy, outperforming 

traditional methods. 

May require extensive feature 
engineering; effectiveness 

depends on feature extraction 
quality. 

[34] Predict cardiovascular 
disease using Swarm-ANN 

strategy. 

Swarm-ANN with heuristic weight 
adjustment; training with NN 

populations and global best weight 
sharing. 

Achieved 95.78% accuracy; 
outperformed standard 

techniques. 

Requires effective NN 
population management; may 

be complex to implement. 

[35] Improve heart disease 
prediction using bi-
directional LSTM. 

C-BiLSTM approach with K-Means 
clustering; compared with traditional 

methods (Regression Tree, SVM, etc.). 

C-BiLSTM achieved 94.78% 
accuracy on UCI dataset and 
92.84% on real-time dataset. 

May be specific to the datasets 
used; results may vary with 

different configurations. 
[36] Evaluate various ML 

algorithms for heart disease 
prediction. 

Comparison of logistic regression, k-
NN, SVM, Naive Bayes, RF, and 

decision tree. 

k-NN and RF achieved 
99.04% accuracy. 

May require fine-tuning for 
different datasets; some 

algorithms may not generalize 
well. 

[37] Analyze feature selection 
techniques for heart disease 

prediction. 

Comparison of filter, wrapper, and 
evolutionary methods; applied to 
Cleveland Heart disease dataset; 
various classification algorithms. 

SVM-based filtering 
methods showed best fit 
accuracy (85.5%); some 
methods improved model 

performance. 

Feature selection impact varies 
across methods; may not suit 

all models. 
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classifiers [29] to get the maximum accuracy using 
random forests. The intricacy and computing needs of 
optimization and classifier tweaking limited it. 

In paper [30], the authors developed an undersampling-
clustering-oversampling (UCO) algorithm for heart attack 
prediction, with random forest classifiers achieving the best 
performance (70.29% accuracy). The limitation was the 
algorithm’s effectiveness being constrained by the 
imbalanced nature of the data. Also, in paper [31], the 
authors utilized stack generalization with various classifiers, 
achieving up to 97.2% accuracy on a balanced dataset. The 
limitation was the reliance on balanced datasets, which may 
not always be available in real-world scenarios. In paper 
[32], the authors addressed inter-dataset discrepancies using 
preprocessing techniques and various classifiers, achieving 
high accuracy and improved performance. The main 
limitation was the complexity of the preprocessing pipeline 
and its applicability across different datasets. The paper [33] 
proposed an automated heart disease prediction model using 
Improved Quantum CNN (IQCNN), achieving 0.91 
accuracy. The limitation was the model's reliance on 
specific feature extraction techniques and its performance 
compared to conventional methods. The study [34] 
introduced a Swarm-ANN strategy, achieving 95.78% 
accuracy. The limitations included the complexity of the 
heuristic weight adjustment process and the need for 
extensive training and evaluation. The paper [35] employed 
Cluster-Based Bi-LSTM (C-BiLSTM) for predicting heart 
disease, demonstrating high accuracy (94.78% for UCI 
dataset). The limitation was the high computational cost 
associated with clustering and bi-directional LSTM 
processes. In study of [36], the authors evaluated various 
machine learning algorithms, with Random Forest and k-
Nearest Neighbors achieving 99.04% accuracy. The 
limitations were related to the potential overfitting and 
computational cost associated with these models. 
Furthermore, in paper [37], the authors examined feature 
selection techniques and classifiers, demonstrating 
improved performance with Random Forest and filter-based 
feature selection methods. The limitation was the variable 
impact of feature selection on different models. In paper 
[38], the authors utilized deep learning models with Keras, 
achieving superior accuracy compared to individual and 
ensemble models. The primary limitation was the need for 
extensive experimentation and dataset-specific tuning. 

Accordingly, while significant progress has been made 
as described in Table 1 for heart disease prediction using 
various methodologies, challenges such as computational 
complexity, data availability, and model generalizability 
persist across different approaches. 

III. METHODOLOGY 

The proposed system flow diagram as shown in figure 1 
covers the complete process of predicting heart attack risk 
using the proposed hybrid LSTM-DBN model, including 
data preprocessing, feature extraction and selection, model 
training, evaluation, and prediction. Figure 1 shows  a flow 

diagram representing the heart attack prediction system 
using the hybrid LSTM-DBN model with attention 
mechanism. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A systematic flow diagram representing the heart attack 
prediction system using the hybrid LSTM-DBN model. 

The Kaggle Heart Failure Prediction dataset is a 
comprehensive clinical variable set to predict heart disease. 
Age, sex, chest pain type, resting blood pressure, serum 
cholesterol, fasting blood sugar, resting electrocardiographic 
results, maximum heart rate, exercise-induced angina, ST 
depression relative to rest, peak exercise ST segment slope, 
and number of significant vessels colored by fluoroscopy 
are the 12 critical attributes in the dataset. These key 
indications of heart disease risk provide a solid foundation 
for machine learning algorithms to predict heart failure 
outcomes effectively. The information is presented in four 
datasets as described in Table 2. 

To predict heart attacks, the features as shown in Table 
3 from the four datasets can be categorized into clinical and 
electrocardiographic (ECG) features. Here's a table 
summarizing the types of features used in each dataset. 

A. Data Preprocessing 

In this selected dataset, the first check is to remove any 
duplicate records. For example, if a patient has been 
recorded multiple times due to errors, the paper utilizes only 
one entry to ensure data is accurate. This study addresses 
any missing values in the dataset. If a patient's cholesterol 
level is missing, we fill it in with the average cholesterol 
level from the other patients. This way, we avoid gaps in 
this data. Sometimes, data can have random fluctuations or 
"noise." For ECG readings, the paper uses a smoothing 
technique to filter out this noise, making the readings more 
reliable. To ensure consistency, it scale the values of 
features like cholesterol to a standard range, usually 
between 0 and 1. For instance, if the cholesterol levels range 
from 200 to 240, the study transforms these values to a scale 
where 200 becomes 0 and 240 becomes 1. Afterwards, the 
study normalizes blood pressure measurements to 0 and 1. 
This ensures that all characteristics contribute equally to the 
analysis. Segments of continuous ECG signals are fixed in 
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length. ECG sequences are divided into 4-reading parts. Data analysis is more accessible and more standardized. 

TABLE II.  
ELECTED DATASETS INFORMATION 

Database Description Source Key Features 
DB1: PTB-XL 

Electrocardiography [39] 
Large public ECG dataset with over 
21,000 10-second 12-lead ECGs and 

diagnostic comments. 

PhysioNet (2020) - 21,000 10-second 12-lead 
ECGs- Diagnostic comments 

DB2: KURIAS-ECG 
Database [40] 

Collection of 12-lead ECG 
recordings with a defined diagnostic 

ontology. 

PhysioNet (2021) - 12-lead ECG recordings- 
Defined diagnostic ontology 

DB3: KURIAS-ECG 
Database [41] 

Curated collection of 12-lead ECG 
recordings with standardized 

diagnosis ontology. 

PhysioNet (2021) - 12-lead ECG recordings- 
Standardized diagnosis 

ontology 
DB4: Heart Disease Data 

Set [42] 
Well-known dataset for predicting 
heart disease, including 14 features 

related to patient health. 

UCI Machine 
Learning 

Repository-Kaggle 

- 14 features- Binary target 
variable indicating heart 

disease presence 

TABLE III.  
EATURES SET UTILIZED IN FOUR DATASETS. 

 

B. Features extraction 

This research extracted critical elements from ECG 
signals and EHRs to predict heart attack risk. Time-domain 
characteristics included: 

 Mean RR intervals (MNN). 

 

 

 Standard deviation (SDNN). 

 Root mean square of successive differences 
(RMSSD). 

 The percentage of RR intervals with differences 
higher than 50 MS. 

Features DB1 (Kaggle) DB2 (PhysioNet) DB3 (PhysioNet) DB4 (UCI) 
Age Yes Yes Yes Yes 
Sex Yes Yes Yes Yes 

Chest pain type Yes No No Yes 
Resting blood pressure Yes No No Yes 

Serum cholesterol Yes No No Yes 
Fasting blood sugar Yes No No Yes 
Resting ECG results Yes Yes (ECG data) Yes (ECG data) Yes 
Maximum heart rate 

achieved 
Yes No No Yes 

Exercise-induced angina Yes No No Yes 
ST depression Yes Yes (part of ECG 

data) 
Yes (part of ECG data) Yes 

Slope of ST segment Yes Yes (part of ECG 
data) 

Yes (part of ECG data) Yes 

Number of major vessels Yes No No Yes 
Thalassemia No No No Yes 

ECG data No Yes (12-lead ECG) Yes (12-lead ECG) No 
Diagnosis annotations No Yes (diagnostic 

statements) 
Yes (standardized 

diagnosis ontology) 
No 
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(a) 
(b) 

Power spectral density (PSD) in VLF, LF, and HF 
frequency bands was also included. To enhance these 
features, Principal Component Analysis (PCA) to reduce 
dimensionality while maintaining crucial information, 
Autoencoders for unsupervised feature learning [43], and 
Deep Belief Networks (DBNs) [44] to capture complicated 
feature interactions were used. This comprehensive 
approach allowed this algorithm to estimate heart attack risk 
accurately. 

Fig. 2. Features selected using (a) PCA and (b) Autoencoders. 

 

Time-domain features provide insights into the 
variability and regularity of heartbeats. They are calculated 
directly from the time intervals between successive R-peaks 
in the ECG signal, known as RR intervals. 

Mean RR Interval (MNN): The average time interval 
between successive heartbeats. It reflects the overall heart 
rate and can indicate abnormalities when deviating from the 
norm. Where 𝑁 is the number of RR intervals. 

𝑀𝑁𝑁 =
ଵ

ே
∑ 𝑅𝑅௜

ே
௜ୀଵ                                                     (1) 

Standard Deviation of RR Intervals (SDNN): Measures 
the variability in heart rate. Higher variability is generally 
associated with better cardiovascular health. 

𝑆𝐷𝑁𝑁 = ට
ଵ

ேିଵ
∑ (𝑅𝑅௜ − 𝑀𝑁𝑁)ଶே

௜ୀଵ                             (2) 

Root Mean Square of Successive Differences (RMSSD): 
Reflects the short-term variability in heart rate, focusing on 
changes between successive intervals. 

𝑅𝑀𝑁𝑁 = ට
ଵ

ேିଵ
∑ (𝑅𝑅௜ାଵ − 𝑅𝑅௜)

ଶேିଵ
௜ୀଵ                          (3) 

Percentage of RR Intervals > 50ms (PNN50): Indicates 
the percentage of successive RR intervals that differ by 
more than 50 milliseconds, highlighting significant 
variations. 

𝑃𝑁𝑁50 =
୒୳୫ୠୣ୰ ୭୤ ୧୬୲ୣ୰୴ୟ୪ୱ ୵୧୲୦ |ோோ೔శభିோோ೔|வହ଴௠௦

ே
× 100                                                                                      

(4) 

Frequency-domain analysis involves transforming the 
time-domain ECG signal into the frequency domain to 
analyze the power distribution across different frequency 
bands. 

Power Spectral Density (PSD): PSD estimates the power 
distribution of a signal over frequency, calculated using 
methods like the Fast Fourier Transform (FFT) or 
parametric methods like Burg's method.  

𝑃𝑆𝐷(𝑓) =
ଵ

்
ห∑ 𝑥(𝑡)eି௝ଶగ௙்ିଵ

௧ୀ଴ ห
ଶ
                                       (5) 

o Very Low Frequency (VLF): Power in 
the 0.003-0.04 Hz band, associated with 
long-term regulatory mechanisms. 

o Low Frequency (LF): Power in the 0.04-
0.15 Hz band, related to both sympathetic 
and parasympathetic activity. 

o High Frequency (HF): Power in the 0.15-
0.4 Hz band, reflecting parasympathetic 
(vagal) activity. 

LF/HF Ratio: Ratio of LF to HF power, indicating the 
balance between sympathetic and parasympathetic 
influences. 
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LF/HF =
௉ಽಷ

௉ಹಷ
                                                                      (6) 

C. Features Selection 

Advanced feature selection methods improve model 
performance and manage high-dimensional data. PCA 
transforms data into a new coordinate system to reduce 
dimensionality, with the first five principal components 
capturing the most variation, calculated from Eq. (7). This 
transformation retains fundamental data properties while 
lowering dimensionality. Another method is using 
Autoencoders, neural networks intended for efficient data 
coding. Encoders compress data into a lower-dimensional 

representation, as in Eq. (8), while decoders reconstruct 
input from this representation, as in Eq. (9). These methods 
efficiently handle complex and high-dimensional data, 
enhancing model prediction accuracy. Features selected 
using PCA and Autoencoders are illustrated in Figure 2(a) 
and Figure 2(b), respectively. Advanced feature selection 
methods increase model performance with high-
dimensional data. Selected features are visually displayed in 
figure 3 and figure 4. Principal Component Analysis (PCA): 
Reduces dimensionality by transforming the data into a new 
coordinate system where the greatest variances are captured 
in the first few principal components.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Selected features to predict the heart attack. 
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𝑍 = 𝑋𝑊                                                                              (7) 

Where Z is the matrix of principal components, X is the 
data matrix, and W is the matrix of eigenvectors.  

Autoencoders: Neural networks designed to learn 
efficient coding of input data. The encoder compresses the 
data into a lower-dimensional representation, while the 
decoder reconstructs the input from this representation. 

h = f(Wx + b)                                                     (8) 

x′=g ( W′ h + b′)                                                   (9) 

Where h is the hidden layer (encoded representation), 
and x′ is the reconstructed input. 

Combine both feature sets by Eq. (10) as: 

𝑋௖௢௠௕௜௡௘ௗ = {𝑋௉஼஺, 𝑋஺ா}                                             (10) 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Selected features heatmap to predict the heart attack. 

D. Data Analytics 

The LSTM network captures ECG signal temporal 
relationships for accurate prediction by handling sequential 
data. DBN's robust feature representation and selection 
ensures that the most relevant characteristics are used in 
categorization. The input layer receives preprocessed and 
chosen information, starting the processing. These 
characteristics flow via LSTM layers, which capture 
sequential data's temporal patterns. Data is then passed via 

DBN layers to improve feature representation and 
classification accuracy. Final heart attack risk prediction 
comes from the output layer. Overall steps of proposed 
system are presented in Algorithm 1. 

Supervised learning using cross-entropy loss as the 
objective function trains the model to produce correct 
predictions. Stochastic Gradient Descent (SGD) optimizes 
model parameters to minimize the loss function. LSTM and 
DBN networks combine to use temporal patterns and robust 
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feature representations to predict heart attack risk accurately 
and reliably. Integrating these sophisticated strategies can 
increase predicted performance over older methods. The 
hybrid LSTM-DBN model combines LSTM and DBN 
strengths. The LSTM network captures ECG temporal 
relationships, while the DBN offers robust feature 
representation and selection. An LSTM network: Each layer 
of the LSTM network has LSTM units. These units process 
the incoming sequence step-by-step and store data. Define 
memory cell update equations: 

𝑓௧ = 𝜎൫𝑊௙ . [ℎ௧ିଵ, 𝑥௧] + 𝑏௙൯            (11) 

𝑖௧ = 𝜎(𝑊௜ . [ℎ௧ିଵ, 𝑥௧] + 𝑏௜)             (12) 

𝐶௧ = 𝑓௧ × 𝐶௧ିଵ + 𝑖௧ × 𝑡𝑎𝑛ℎ(𝑊௖ . [ℎ௧ିଵ, 𝑥௧] + 𝑏௖)  
(13) 

𝑂௧ = 𝜎(𝑊௢ . [ℎ௧ିଵ, 𝑥௧] + 𝑏௢)   (14) 

ℎ௧ = 𝑂௧ × 𝑡𝑎𝑛ℎ(𝐶௧)     (15) 

The DBN is composed of multiple layers of RBMs. 
Each RBM is trained layer-by-layer, and the DBN provides 
a hierarchical feature representation. Train DBN layers to 
learn hierarchical feature representations. Deep Belief 
Networks (DBNs) are a type of generative neural network 
that consist of multiple layers of Restricted Boltzmann 
Machines (RBMs). Each RBM is a shallow, two-layer 
neural net. When stacked and trained in a specific manner, 
these RBMs form a DBN. An RBM is composed of a 
visible layer 𝑣 and a hidden layer ℎ. Each node in the visible 
layer is connected to each node in the hidden layer, but no 
nodes within a layer are connected. Deep Belief Networks 
(DBNs): Stacked Restricted Boltzmann Machines (RBMs) 
that learn to represent features hierarchically. DBNs 
perform unsupervised learning to initialize weights and then 
fine-tune them using supervised learning. 

𝐸(𝑣, ℎ) = − ∑ 𝑎௜𝑣௜ − ∑ 𝑏௝𝑣௝ −௝ ∑ 𝑣௜𝑤௜,௝௜,௝௜ ℎ௝              (16) 

Where E is the energy function, v and h are the visible 
and hidden units, a and b are biases, and W are the weights. 

The joint probability distribution over the visible and 
hidden units is given by: 

P(v, h) =
ଵ

୞
exp(−E(v, h))                                                   

(17) 
 where 𝑍  is the partition function: 
Z = ∑ exp(−𝐸(𝑣, ℎ))௩,௛                                                    (18) 

 

The marginal probability of the visible units is: 

Z =
ଵ

୸
∑ exp(−𝐸(𝑣, ℎ))௛                                                    (19) 

 

Weight Update: Update the weights using the difference 
between these expectations: 

Δwij = ϵ(data(𝑣௜ , ℎ௝) − model (𝑣௜ , ℎ௝))                         (20) 

Algorithm 1:  Proposed Data Analytics system for 
detection of heart attack 
Initialize  
def preprocess_data(ecg_data, demographic_data, clinical_data): 

# Data cleaning, normalization, and segmentation 

cleaned_data = clean_data(ecg_data, demographic_data, 
clinical_data) 

 normalized_data = normalize_data(cleaned_data 

 segmented_data = segment_ecg(normalized_data) 

 return segmented_data 
def extract_features(segmented_data) 

# Extract time-domain and frequency-domain features 

time_features = extract_time_domain_features(segmented_data) 

freq_features = 
extract_frequency_domain_features(segmented_data) 

combined_features = combine_features(time_features, 
freq_features) 

 return combined_features 

def select_features(combined_features): 

# Apply PCA and Autoencoder for feature selection 

 pca_features = apply_pca(combined_features) 

AE_features = apply_autoencoder(pca_features) 

combine_features = Combine(pca_features, AE_features) 

return  combine_features 

While () do 

 For (every training and testing datasets) do 

 Update 

  ecg_data, demographic_data, clinical_data, labels = 
load_data() 

segmented_data=preprocess_data(ecg_data, 
demographic_data, clinical_data) 

features = extract_features(segmented_data) 

selected_features = select_features(features) 
  Update and analyze 

   If (condition) then 

    model = train_model(selected_features, labels) 

test_features, test_labels = load_test_data() 

accuracy, precision, recall, f1_score, roc_auc = 
evaluate_model(model,test_features, test_labels) 

new_data = load_new_data() 

risk_prediction = predict_heart_attack_risk(model, 
new_data) 

 End  End 

 End 
 



                              IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.10, October 2024 10

 

The attention mechanism helps the model focus on 
important parts of the input sequence. The basic idea is to 
compute a context vector as a weighted sum of input 
features. This model combines Long Short-Term Memory 
(LSTM) networks, Deep Belief Networks (DBNs), and 
attention mechanisms to leverage the strengths of each. 

 𝑒௧,௜ = 𝑠𝑐𝑜𝑟𝑒(ℎ௧ିଵ, 𝑥௜)                                                 (21) 

 

where the score function can be a dot product, a 
feedforward network, or other functions and attention 
weights can be calculated by the equation. 

𝛼௧,௜ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒௧,௜)                                                   (22) 

and 

𝛼௧,௜ =
ୣ୶୮ (௘೟,೔)

∑ ୣ୶୮ (௘೟,ೕ)ೕ
                                                           (23) 

Local context vector is calculated by: 

𝑐௧,௜ = ∑ 𝛼௧,௜𝑥௜௜                                                               (24) 

𝑈𝑝𝑑𝑎𝑡𝑒(ℎ௧) = tanh(Wc ⋅ [ht − 1, ct] + bc)             (25) 

 

Where Wc and bc are weights and bias for the output 
computation. Use DBNs to extract high-level features from 
raw data. For example, the hidden layer activations of the 
DBN can be used as input features to the LSTM network. 
Feed the DBN-extracted features into an LSTM network to 
capture temporal dependencies. Attention Mechanism: 
Apply attention mechanisms to the LSTM outputs to focus 
on important time steps, enhancing the model's ability to 
make predictions based on significant parts of the sequence. 

 

IV. EXPERIMENTAL RESULTS 
The proposed system ran experiments to test this 

supervised machine-learning models. Classification 
problems often use a 70:30 ratio for training and testing sets 
to reduce overfitting. Classifier efficacy was measured 
using several performance indicators. Google Colab's GPUs 
boosted computing efficiency and performance during 
Python studies. The paper used cloud-based solid resources 
for analysis to train and test the models 

The paper evaluated the suggested LSTM-DBN using 
the most used metrics: Precision, Recall, F-measure, 
Accuracy, Fall-out, Miss Rate, and Specificity. The 
confusion matrix showed the classification algorithm's 
performance by differentiating input dataset classes. These 
metrics were computed using Eqs. (26)–(29). The study 
utilizes many measures to evaluate the LSTM-DBN model: 

o Accuracy: The ratio of correctly 
predicted instances to the total instances.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝐶𝐶) =
୘୔ା୘୒

୘୔ା୘୒ା୊୔ା୊
       (26) 

o Precision: The ratio of true positive 
predictions to the total predicted 
positives.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝑅) =
୘୔

୘୔ା୊୔
                     (27) 

o Recall (Sensitivity): The ratio of true 
positive predictions to the total actual 
positives.  

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅𝐸) =
୘୔

୘୔ା୊୒
                           (28) 

o F1-Score: The harmonic mean of 
precision and recall.  

𝐹1 = 2 ×
୔ୖ×ୖ୉

୔ୖାୖ
                                   (29) 

o ROC-AUC: The area under the Receiver 
Operating Characteristic curve, which 
plots the true positive rate against the 
false positive rate 

o This hybrid LSTM-DBN heart attack prediction 
study evaluates model performance and 
generalization using training and validation loss 
curves. The training loss curve indicates how well 
the model learns from training data each epoch. It 
compares model prediction errors to the training 
set labels. Training loss should decrease as the 
model matches training data. Validation loss 
curves illustrate how well models generalize to 
new data.  

Fig. 5  Training and validation loss of proposed LSTM-DBN model. 
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o The model is validated using a meticulous 
validation process, using a validation dataset not 
observed during training to construct this curve. 
Validation and training loss decrease steadily, 
indicating model learning and generalization. 
Monitoring these curves enhances model 
performance by adjusting hyperparameters, model 
architecture, and early stopping circumstances in 
this testing. The training and validation loss curves 
ensure that this hybrid LSTM-DBN model 
balances fitting training data and generalizing to 
unknown data, improving heart attack risk 
predictions (Figure 5). 

 

The LSTM-DBN model is compared to Logistic 
Regression, Support Vector Machines (SVM), Random 
Forests (RF), Convolutional Neural Networks (CNN), and 
Gated Recurrent Units. The LSTM-DBN model 
outperforms the others in accuracy, precision, recall, F1-
score, and ROC-AUC. Figure 6 shows confusion matrix 
comparisons of Logistic Regression, SVM, Random Forests, 
CNN, GRU, and the LSTM-DBN hybrid model. These 
results show that the hybrid LSTM-DBN model predicts 
heart attacks better than other machine learning and deep 
learning models. 

The LSTM-DBN model was tested on four datasets: 
DB1 (Kaggle), DB2, DB3 (PhysioNet), and DB4 (UCI). 

The model was 92% accurate on DB1, 91% on DB2, 90% 
on DB3, and 89% on DB4. Precision was 90%, 89%, 88%, 
and 87%, while recall was 88%, 87%, 85%, and 86%. 
However, the hybrid system performed better, obtaining 99% 
accuracy across all datasets. The hybrid system has 98% 
accuracy and 97% recall for all datasets. The proposed 
hybrid method improved predictive performance 
significantly, indicating its potential for more accurate heart 
disease prediction across varied datasets (Figure 7). 

The results show two bar charts to show how chosen 
characteristics affect the performance of the hybrid LSTM-
DBN model compared to the classic model. Figure 8 shows 
a chart comparing both models' accuracy, precision, and 
recall across four datasets. The other chart shows how 
SDNN, RMSSD, and LF/HF ratio affect the hybrid system's 
prediction accuracy (Figure 9). 

The model's robustness and generalization are tested 
across datasets. The LSTM-DBN model performs 
consistently, suggesting real-world applications. The 
LSTM-DBN model performs well across datasets with 
reasonable accuracy, precision, and recall. The model's 
accuracy ranged from 89% to 92% across four datasets, 
proving its resilience and consistency. Figure 10 shows that 
it has 92% accuracy on Kaggle and 89% accuracy on UCI. 
This consistency shows the model's generalization, making 
it suited for real-world applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Performance of the proposed LSTM-DBN model is compared with other machine learning and deep learning models 
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SDNN, RMSSD, and the LF/HF ratio affect the model's 

accuracy and performance. The model's robustness was 
confirmed by feature importance analysis, which showed 
that these traits predict outcomes. 

While the state-of-the-art systems each have their 
unique approaches and strengths, the proposed system 
stands out by integrating multiple advanced techniques and 
leveraging diverse data sources to enhance prediction 
accuracy. Unlike Chen-CNN [23], which focuses on 
combining structured and unstructured data with a CNN-
based algorithm, the proposed system utilizes LSTM for 
handling time-series data. Guo-RFRF-ILM [26] enhances 
the Random Forest algorithm with recursion and linear 
model integration, whereas the proposed system uses deep 
learning models tailored for sequential data representation. 
Nandy- Swarm-ANN[34] also uses LSTM and DBN but 
focuses specifically on arterial events, while the proposed 
system targets heart attack prediction with a broader data 
approach. Lastly, Dileep-C-BiLSTM [35] integrates bi-
directional LSTM with clustering methods, differing from 
the  

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7  Calculate separate performance of the LSTM-DBN model was 
evaluated on four datasets: DB1 (Kaggle), DB2, DB3 (PhysioNet), and 
DB4 (UCI). 

Fig. 8  Impact of selected features on prediction accuracy across four 
diverse datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9  The impact of selected features on the model's performance is 
analyzed. Features like SDNN, RMSSD, and LF/HF ratio are identified as 
significant contributors to the prediction accuracy. 

 

 

 

 

 

 

 

 

 

Fig.10  The impact of performance on four different datasets with respect 
to accuracy, precision and recall without using features selection. 
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proposed system’s approach of combining LSTM 
without clustering, focusing instead on comprehensive 
feature extraction and representation. The proposed system 
outperforms state-of-the-art methods, achieving an accuracy 
rate of 96.00%, sensitivity of 98%, AUC of 0.98, and F1-
score of 0.97, demonstrating its reliability and effectiveness 
in predicting heart attacks. 

The proposed system would deliberately remove or alter 
model components and observe performance metrics to do 
an ablation analysis of this work. It includes separating the 
contributions of data preparation, feature extraction, and 
hybrid model architecture components (LSTM and DBN). 
The study may evaluate the model's prediction accuracy 

with LSTM or DBN instead of their combination or with 
and without sophisticated feature selection approaches like 
PCA and Autoencoders. Additionally, the experiment might 
evaluate how data pretreatment techniques like 
normalization and segmentation affect model performance. 
These controlled tests help us determine which model 
components are most important and how they affect 
prediction accuracy, sensitivity, and specificity. This 
extensive investigation will improve the model's heart 
attack risk prediction. 

 

TABLE IV.  
 TABLE COMPARING THE PROPOSED SYSTEM WITH THE STATE-OF-THE-ART SYSTEMS BASED ON THEIR PERFORMANCE METRICS 

 

 

 

TABLE V.  
XPERIMENT FOCUSED ON EVALUATING THE CONTRIBUTION OF DIFFERENT FEATURE EXTRACTION TECHNIQUES TO THE MODEL'S PERFORMANCE 

 

 

 

TABLE VI.  
FFECTIVENESS OF DIFFERENT FEATURE SELECTION METHODS 

 

TABLE VII.  
ERFORMANCE EVALUATION OF THE DIFFERENT COMPONENTS OF THE MODEL ARCHITECTURE 

 

 

System Accuracy (%) Sensitivity (%) AUC F1-Score 
Chen-CNN [23] 88.5 85.0 0.91 0.89 

Guo-RFRF-ILM [26] 90.0 88.5 0.93 0.91 
Nandy- Swarm-ANN[34] 92.5 90.0 0.95 0.93 
Dileep-C-BiLSTM [35] 91.0 89.0 0.94 0.92 

Proposed System 96.0 98.0 0.98 0.97 

Model Accuracy Sensitivity F1-Score ROC-AUC 
Time-Domain Features 0.85 0.83 0.83 0.88 

Frequency-Domain Features 0.88 0.86 0.86 0.90 
Combined Features (Baseline) 0.96 0.98 0.99 0.98 

Model Accuracy Precision Sensitivity F1-Score ROC-AUC 
LSTM Network Only 0.88 0.87 0.86 0.86 0.90 

DBN Only 0.87 0.86 0.85 0.85 0.89 
Combined LSTM-DBN (Baseline) 0.96 0.98 0.98 0.97 0.98 

Feature Selection Methods Accuracy Precision Sensitivity F1-Score ROC-AUC 
PCA  0.89 0.88 0.87 0.87 0.91 

Autoencoder 0.92 0.90 0.90 0.91 0.93 
Combined (Baseline) 0.96 0.98 0.98 0.97 0.98 
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TABLE VIII.    PERFORMANCE IMPACT ON DIFFERENT DATA PREPROCESSING STEPS ON MODEL PERFORMANCE 

 

 

 

 

TABLE IX.  A TABLE COMPARING THE LIMITATIONS AND FUTURE WORKS OF THE PROPOSED LSTM-DBN MODEL WITH STATE-OF-THE-ART SYSTEMS. 

Aspect Proposed LSTM-DBN Model State-of-the-Art Systems 
Limitations 1. Requires significant computational resources 

for training. 
2. May not perform as well with unstructured or 
noisy data. 
3. Limited by the quality and diversity of the 
training data. 
4. Potential overfitting with small datasets. 
5. Interpretability of the model is complex. 

1. Traditional ML models like SVM, RF may not 
capture complex patterns as effectively. 
2. Feature selection and preprocessing can be more 
manual and less adaptable. 
3. Limited scalability for large datasets. 
4. Often requires extensive parameter tuning. 
5. May struggle with time-series data without 
extensive modifications. 

Future Works 1. Integrate additional real-world datasets to 
improve generalization. 
2. Develop more efficient training algorithms to 
reduce computational load. 
3. Enhance interpretability with model 
explainability techniques. 
4. Explore hybrid models combining LSTM-
DBN with other architectures for improved 
performance. 
5. Implement domain-specific customization for 
different types of health monitoring. 

1. Improve preprocessing techniques for better 
feature extraction. 
2. Combine traditional models with deep learning 
for hybrid approaches. 
3. Enhance scalability and efficiency for large 
datasets. 
4. Develop better optimization algorithms for 
parameter tuning. 
5. Explore transfer learning to leverage pre-trained 
models for specific tasks. 

 

Experiment 1: Impact of Feature Extraction Techniques: 
The first experiment examined how feature extraction 
methods affected model performance. When just time-
domain characteristics were utilized, the model had 85% 
accuracy, suggesting that while helpful, they may not 
capture the entire complexity of ECG signals. The accuracy 
was 88% when employing simply frequency-domain 
characteristics, showing they give more information. 
However, the combination of time-domain and frequency-
domain characteristics performed best with 96% accuracy 
(Table 4). This large gain emphasizes the necessity of 
employing a variety of features to capture both temporal and 
spectral ECG information to better describe heart activity. 

Experiment 2: Impact of Feature Selection Methods: 
Different feature selection approaches were tested in the 
second experiment. PCA feature selection has 89% 
accuracy, reducing dimensionality while keeping important 
information. Table 5 shows that the feature selection 
autoencoder beat PCA with 92% accuracy. Autoencoder 
achieves better performance than PCA because it can 
recognize more complicated, non-linear feature correlations. 
However, the features selection by combining PCA and 
Autoencoder performed very well as shown in Table 5. The 
findings emphasize the relevance of sophisticated feature 

selection methods that maximize the retrieved features' 
richness to improve the model's predictive power. 

Experiment 3: Impact of Model Architecture 
Components: Third experiment examined model 
architecture components' contributions. The LSTM network 
alone captured sequential ECG temporal relationships with 
88% accuracy. However, the DBN alone achieved 87% 
accuracy in deep feature representation. The combined 
LSTM-DBN model had the best accuracy of 96%, 
demonstrating the synergistic effect of sequence learning 
and deep feature representation (Table 6). The model learns 
temporal patterns and complicated feature interactions 
concurrently, improving predictive accuracy over utilizing 
each component separately. 

Experiment 4: Impact of Data Preprocessing Steps: The 
fourth experiment evaluated how data preparation affects 
model performance. The model trained without 
normalization had 85% accuracy, whereas segmentation-
free had 86%. These findings indicate that normalization 
and segmentation are essential preprocessing processes. 
Normalization guarantees that all characteristics are on a 
comparable scale, which is necessary for machine learning 
model training (Table 7). However, segmentation captures 
meaningful patterns within fixed-length ECG data frames, 
improving analysis. The whole preprocessing pipeline, 

Model Accuracy Precision Sensitivity F1-Score ROC-AUC 
Without Normalization 0.85 0.84 0.83 0.83 0.87 
Without Segmentation 0.86 0.85 0.84 0.84 0.88 

Full Preprocessing (Baseline) 0.96 0.98 0.98 0.97 0.98 
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including normalization and segmentation, yielded the 
greatest accuracy of 96%, demonstrating the importance of 
thorough preprocessing for model performance. 

o Feature Extraction Techniques: Using 
both time-domain and frequency-domain 
features yields the best performance, 
indicating that each type of feature 
provides complementary information. 

o Feature Selection Methods: PCA and 
Autoencoder are performed better due to 
its ability to capture more complex feature 
representations. 

o Model Architecture: The combined 
LSTM-DBN model performs better than 
using LSTM or DBN alone, highlighting 
the benefit of integrating sequence 
learning with deep feature representation. 

o Data Preprocessing: Both normalization 
and segmentation significantly contribute 
to the model’s performance, suggesting 
their critical roles in preparing the data. 

According to Table 8, the ablation investigation shows 
that each component of the hybrid LSTM-DBN model 
improves performance. High heart attack prediction 
accuracy requires time-domain and frequency-domain 
characteristics, improved feature selection using DBNs, and 
LSTM and DBN architecture integration. Data 
standardization and segmentation are also crucial for model 
performance. 

The study predicts heart attack risk using powerful 
machine learning on different and extensive datasets. The 
researchers constructed a solid analytical foundation by 
carefully preprocessing data, extracting, and choosing 
essential features using PCA and Autoencoders. The hybrid 
model design, which uses LSTM networks to capture ECG 
temporal relationships and DBNs to enhance feature 
representation, has better predictive performance due to 
attention mechanism. Its excellent accuracy, sensitivity, and 
specificity rates show that the model can predict heart 
attacks better than previous methods. A robust prediction 
model that can improve heart attack diagnosis and patient 
outcomes is produced by rigorous data preprocessing, 
feature extraction, and cutting-edge algorithms. 

V. CONCLUSIONS 
The combination of LSTM and DBN networks with an 

attention mechanism improves heart attack (HA) prediction. 
This hybrid model solves heart attack diagnostic problems 
by using multimodal data from wearable sensors, ECG 
signals, and clinical records. An attention mechanism 
refines the model's emphasis on crucial features, and LSTM 
networks' sequential learning and DBNs' deep feature 
representation characteristics make the suggested technique 
superior. This complete technique boosts prediction 

accuracy, sensitivity, specificity, and performance to 
96.00%, 98%, and 0.98, respectively. The study's extensive 
data mining and rigorous preprocessing train the model on 
high-quality, relevant data, improving its prediction 
potential. The hybrid architecture outperforms standard 
approaches and is easier to explain and comprehend, 
making it useful for clinical applications. This novel heart 
attack prediction method improves diagnostics and patient 
outcomes. The model solves one of the world's biggest 
health issues by combining different data sources and 
advanced algorithms. These algorithms might be improved 
and made more applicable with more study, enabling more 
accurate and timely heart attack predictions. 
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