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Abstract 
This paper investigates the identification and modeling of a 
climate greenhouse. Given real climate data from greenhouse 
installed in the LAPER laboratory in Tunisia, the objective of 
this paper is to propose a solution of the problem of nonlinear 
time variant inputs and outputs of greenhouse internal climate. 
Based on fuzzy logic technique combined with least mean 
squares (lms) a robust greenhouse climate model for internal 
temperature prediction is proposed. The simulation results are 
presented to demonstrate the effectiveness of the identification 
approach and the power of the implemented Takagi-Sugeno 
Fuzzy model based Algorithm. 
Keywords: 
TS fuzzy modeling, Greenhouse climate, fuzzy clustering, Identifi
cation. 
 

1. Introduction 
 

Greenhouse cultivation has been of a great importance 
in agriculture supplies for many years.  It is a way to 
protect plants from bad meteorological conditions and to 
take advantage of the internal climate to guarantee the 
high-quality and the low-cost of production.  The optimal 
management of the greenhouse climate is the most 
appropriate way to meet the needs of industrial agricultural 
production. 

This management is essentially based on the efficient 
use of solar energy, air heating, ventilation and cooling. 
For these different reasons, the modeling of the 
greenhouse is very difficult in terms of the non-linearity 
that describes the function between the outputs (internal 
humidity, internal temperature) and the inputs (external 
temperature, external humidity, solar radiation, wind 
speed...) [1]. 

To develop a control technique, a good model of the 
greenhouse is needed for the simulation and also for real 
time control. Various methods have been proposed in the 
past for modeling the greenhouse. In the literature, there 
are two main categories of mathematical modeling 
techniques for real processes [2]: Physical modeling and 
system identification. The first is based on the physical 
laws involved in the process and  

 
the second is based on the analysis of the input-output 

data of the model. In [3,4] the dynamic temperature model 
is based on the energy balance. The author in [5] 

developed the physical model of the greenhouse by 
conducting research on thermal radiation and ventilation. 
The modeling of the system was described from the 
process of mass-energy exchange in [6]. The work in [7] 
studied the heat exchange by internal convection, plant 
transpiration and natural ventilation to establish a 
greenhouse model.  An analysis in [8] was performed on 
auto-regressive models with external data based on the 
GDGCM model. In [9] the modeling of the internal 
temperature of the greenhouse is based on a hybrid system 
to obtain several greenhouse models.  An identification 
was used in [10] based on Takagi-Sugeno (TS) fuzzy 
model. In [11] clustering brings back the main parameters 
for modeling the greenhouse. In [12] hierarchical strategy 
is used to minimize the number of fuzzy rules in the 
modeling of the system. A fuzzy modeling using neural 
network learning techniques was developed in [13,14]. To 
obtain the consequences of the rules, we can see the use of 
least squares for the modeling in [15,16]. In [17] the 
Calculus of variations and nonlinear optimization-based 
algorithm for optimal control of hybrid systems with 
controlled switching.   

 
In this paper, we focus principally on the modelling 

phase. The contribution is dedicated to the modeling of a 
class of nonlinear dynamic processes by merging local 
linear models. These local linear models are the fuzzy 
models of Takagi-Sugeno type [18]. The output of these 
fuzzy systems is obtained by simple interpolation of 
locally approved linear models. This approach allows 
firstly, a linguistic interpretation of the fuzzy rules. On the 
other hand, classical methods of linear control can be 
applied to local fuzzy models [19,20]. The information 
system from fuzzy models can be used by a great variety 
of command methodologies. Thus, the performance of the 
control depends heavily on the accuracy of the model used. 
Therefore, a large part of the design effort must be 
dedicated to modeling. So, our objective is to have the 
simulation results of a FIS system that seeks to generate a 
linguistic model optimized by back-propagation and the 
least mean squares algorithm for predicting the climate of 
the greenhouse.  

 
This work is organized as follows: the second section, 

deals with a description of the experimental setup studied 
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for the greenhouse with the measurement equipment. The 
third section, describes the Takagi-Sugeno (TS) fuzzy 
model strategy that was developed and applied to the 
greenhouse to identify the internal temperature model. In 
the fourth section, a fuzzy model presentation of the 
greenhouse is given followed by simulation results. Finally, 
this study will be complemented by a conclusion. 
 

2. Experimental set-up  

2.1 Description of the experimental greenhouse 

In this work, for the experimental part, the real 
greenhouse is located at the Laboratory of Application for 
Energy Efficiency and Renewable Energies (LAPER). The 
external structure of the greenhouse is oriented east-west 
and has the form of a chapel, as illustrated in Figure 1.  
The geometric characteristics of the greenhouse are: length 
= 150 cm; width = 100 cm; height = 115 cm. 
 

 
Fig. 1. Experimental Greenhouse. 

 

2.2 Description of the measuring equipment 

 
The database is obtained using the following apparatus: 
 
-Air temperature is measured by an LM35 sensor, with an 
accuracy of 0.4°C in the temperature range between -24°C 
and 48°C. 
- The relative humidity is measured by a SY-230 sensor. 
These sensors have an accuracy of about 3% in the 
measurement range between 0 and 95%. 
- Pyranometer type LPYRA03 was used to measure the 
global solar radiation level on a horizontal surface. The 
accuracy is about 5%. The measuring range 0 to 2000 
W/m2 and the typical sensitivity is about 10 µV(W/m2).  

3. Takagi-Sugeno fuzzy model 

3.1 Basic structure 

 
The fuzzy logic can provide an interesting alternative 

to mathematical modeling for many physical processes 
that are too complicated to be described by precise and 
simple mathematical equations or formulas. There are 
several classes of fuzzy systems, the most commonly used 
are Mamdani fuzzy systems [10] and Takagi-Sugeno (TS) 
fuzzy systems. The particularity of these systems is that 
the consequence of each rule does not correspond to a 
fuzzy set but to a local model of the system to be estimated. 
The TS model is composed of if-then rules with fuzzy 
antecedents and mathematical functions in the consequent 
part [21]. The antecedents of fuzzy sets that divide the 
input space into a number of fuzzy regions, while the 
consequent functions are used to describe the behavior of 
the system in these regions [22]. For an ith rule, a TS fuzzy 
system has the following form: 
 

       i i iIf  x k  is M , then x k +1 = A x k + B u k  (1) 

 
With, x(k) represents the state vector and Mi   represents 
the vector of the fuzzy set of the ith rule. The output of the 
TS model corresponds to every rule.  Therefore, it is 
necessary to attribute a weight to describe the similarity 
ratio of each rule to the actual behavior of the process: 
 

     
p

i ij j
j=1

w x k = M x k                              (2) 

With,   ij jM x k  is the membership degree of the jth 

state variable to the ith rule. In addition,   iw x k is the 

product of all the membership degrees of the ith rule, 
which shows the weight of this rule in the whole model. 
Therefore, the output can be defined by the weighted 
average of all rules: 
 

 
       

  

n

i i i
i=1

i n

i
i=1

w x k A x k + B u k
x k +1 =

w x k




      (3) 

Thus, in the whole TS fuzzy system, the weighting of the 
element x(k ) is described in the form : 
 

     
  

i
i n

i
i=1

w x k
x k =

w x k



                                        (4) 
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So, the output of the TS model is: 

      
n

i i
i=1

x k +1 = x k +1 x k                          (5) 

3.2 Fuzzy clustering 

Fuzzy clustering consists on identifying natural 
groupings of data from a large data set to produce accurate 
representation of a system's behavior. It is useful to divide 
a fuzzy data set into a certain number of groups by 
mapping membership probabilities to each object [23]. 
The membership of each data item to each group is 
illustrated by the membership matrix with size c?  for 

grouping the data set  1 2 lX = x ,x ,...x : 

 

11 1 1

1

1

l

l

c c cl

u u u

u u uU =

u u u



  



 
 
 
 
 
 
  

 

    

 

    

 

                              (6) 

 
With, uαβcorresponds to the membership degree of 
theβth(β=1,2,…l)element to αth  clustering. 
In the present matrix, there are several limitations: 
 

  αβu 0,1  

 
c

αβ
α=1

u = 1  

 0
l

αβ
=1

u l

   

 
The objective function is defined as follows during the 

clustering: 
 

     
l c m 2

αβ αβ
β=1 α=1

J U,V = u d                               (7) 

 

With,  1 cV = v ,...,v represents a vector whose elements 

representing the center of each clustering. m is the weight 
factor which usual value is 2. The euclidean distance 
between the βth element and the center of the αth fuzzy 

clustering is defined by  2 2
d x v    . Thus, the 

objective function aims are to calculate the sum of the 
weighted values. To obtain the minimum of the objective 
function, it is necessary to search for the partial derivatives 

and make them equal to zero. Finally, the limit conditions 
are: 
 

 

 

l m

αβ β
β=1

α l m

αβ
β=1

u x

v =
u




                                                    (8) 

 
2

m-1
β α

αβ 2
-c m-1

β α
α=1

x - v
u =

x - v
                                               (9) 

 
Where vα is to calculate the center of αthclustering while 
uαβ is to renew the membership degree of each element. In 
the clustering process, the iteration will be completed until 
it satisfies the convergence condition [24] or about the 
iteration times. 
 

3.3 Parameter estimation 

 
Generally, it is recommended to start with a linear 

model and determine the structure of the system based on 
the available tools to use the best model possible as a 
starting point for the nonlinear modeling. This is possible 
with the TS models' ability to use the local linear models 
obtained by fuzzy identification and interpolate them with 
each other to optimize the nonlinear structure of the 
systems and obtain optimal results. 

The common way to identify the parameters is the least 
squares method which processes data in a similar way. 
However, the different rules play a different role in the TS 
fuzzy model. For this reason, the ordinary least squares 
lms method should be applied [10]. Firstly, the 
consequence must be rewritten in the following form:  

 

  1 1 p p 1 1 q qx k +1 = a x + +a x +b u + +b u     (10) 

 
Where x (k +1) is the output of this rule, x and u are the 
system inputs. Thus, the data can be described as follows: 
 

 

 

 

 

 

 
;  

Y 2 x 2 X 1

Y = = X =

Y k +1 x k +1 X k

     
     
     
          

        (11) 

 
The parameters of an ordinary lms identification are 
determined by the following equation:  
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-1T T
i i iθ = X Q X X QY                                          (12) 

 
Where, θi  represents the consequent parameter vector 

and Qi represents the weight matrix that contains the 
weight of all the data: 
 

  

  

i

i

x 1 0 0

Q = 0 0

0 0 x n





 
 
 
 
  

                     (13) 

 
 
 

4. Greenhouse fuzzy modeling and 
simulation results  

 
 

The main objective of fuzzy identification is to improve 
the accuracy compared of nonlinear physical model. 

 For this simulation, a database was recorded on 
05/10/20 at the LAPER laboratory to do the greenhouse 
fuzzy modeling. The sampling rate is fixed to 15 seconds. 
For this analysis, from the data obtained we have fixed 2 
membership functions for the inside temperature, the 
outside temperature, the humidity and the solar radiation.  
The data of each input will be classified and indexed using 
the C-Mean Fuzzy algorithm and then will be 
approximated by trapezoidal membership functions. The 
results obtained for each input are represented by the 
figures (Figure 2, Figure 3 and Figure 4, Figure 5), 
designating the membership functions of the discrete fuzzy 
model as well as the groupings established by the C-Mean 
Fuzzy algorithm. For each input, we select a small number 
of clusters to minimize the number of rules in the TS fuzzy 
system.  
 

 
Fig. 2  Membership of internal temperature (°C) (solid line) and data 

clusters (points). 

 

 

 
Fig. 3 Membership of external temperature (°C) (solid line) and data 

clusters (points). 

 
 

 
Fig. 4 Membership of internal humidity (%) (solid line) and data clusters 

(points). 

 

Fig. 5 Membership of radiation (W/m2) (solid line) and data clusters 
(points).  

 
 
The consequent output of a rule i of the TS fuzzy model to 
be identified has the form: 
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       
       

i 1i 2i i 3i e 4i i

5i e 6i s 7i i 8i ch

T k+1 = a +a T k +a T k +a RH k

+a RH k +a R k +a V k +a Q k
  (14) 

 
Where Ti is the internal temperature, Te is the external 

temperature, RHi is the internal humidity, RHe is the 
external humidity, Rs is the solar radiation, Vi is the 
internal air speed and Qch is the heat delivered by the 
thermal system. 
 

Subsequently, the practical results show that the fuzzy 
identification systems generated with the LMS methods is 
more accurate than the dynamic modeling (Figure 8) 
because we observe a good convergence to the real data 
Figure 6. Moreover, we notice in Figure 7 the error is of 
the order of 1 % compared to the classical dynamic 
modeling which reaches an error value of (2%, -4%) 
(Figure 9), hence the efficiency of the model greenhouse 
obtained. Also, to evaluate the result quantitatively, we 
adopt the VAF function [25], to compare the difference 
degree between two signals. This function is given as 
follows: 
 

 
 
1 2

1

var y - y
VAF = 1- ,0 ? 00%

var y

  
 
  

                 (15) 

 
     Where y1 represents the real data, y2 represents the 
simulation result and var is the variance. The result is 
more accurate if the VAF value is closer to 100%. On the 
contrary, the result is less accurate if the VAF value is 
closer to 0%. After the calculation, the temperature 
variation value for the physical model VAF=89.38 % and 
the temperature variation value for the fuzzy model 
VAF=97.47%. We can see that the performance of the 
proposed modeling method is successful for any kind of 
greenhouses. 
 

 
Fig.6 Inside temperature of the greenhouse and output of the fuzzy model. 

 

 

 
Fig.7 Difference between inside temperature of the greenhouse and 

output of the fuzzy model. 

 
 

Fig.8 Inside temperature of the greenhouse and output of dynamic model. 

 
Fig.9 Difference between inside temperature of the greenhouse and 

output of the dynamic model. 
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5. Conclusion  

 

This paper proposes a greenhouse model method 
based on a TS fuzzy model using the Fuzzy C-means 
algorithm for clustering and the least mean squares method 
for adjusting the model. This method has great advantages: 
it allows to modify the hierarchical structures by adding or 
removing a sub-model or rules at any time, without the 
need to repeat the whole identification process and to use 
all the data collected. These sub-models have similar 
correspondences in the physical modeling, which represent 
the contributions of the process mechanisms involved in 
the global process. 

According to the comparison results obtained by the 
fuzzy model and the experimental results, we confirmed 
the efficiency and accuracy of the proposed model to 
predict the internal greenhouse climate.  

In the next work, we think to integrate the developed 
model in an adaptive control system in order to obtain an 
increase in the production and quality of horticultural 
products and to reduce energy consumption. 
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