
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

191

Manuscript received May 5, 2024
Manuscript revised May 20, 2024

https://doi.org/10.22937/IJCSNS.2024.24.5.21

JarBot: Automated Java Libraries Suggestion in JAR Archives
Format for a given Software Architecture

P. Pirapuraj† and Indika Perera††

† Department of Information & Communication technology, Faculty of Technology, South Eastern University of Sri Lanka,
Sri Lanka

†† Department of Computer Science and Engineering, Faculty of Engineering
University of Moratuwa, Sri Lanka

Summary
Software reuse gives the meaning for rapid software
development and the quality of the software. Most of the Java
components/libraries open-source are available only in Java
Archive (JAR) file format. When a software design enters into
the development process, the developer needs to select necessary
JAR files manually via analyzing the given software architecture
and related JAR files. This paper proposes an automated
approach, JarBot, to suggest all the necessary JAR files for given
software architecture in the development process. All related JAR
files will be downloaded from the internet based on the extracted
information from the given software architecture (class diagram).
Class names, method names, and attribute names will be
extracted from the downloaded JAR files and matched with the
information extracted from the given software architecture to
identify the most relevant JAR files. For the result and evaluation
of the proposed system, 05 software design was developed for 05
well-completed software project from GitHub. The proposed
system suggested more than 95% of the JAR files among
expected JAR files for the given 05 software design. The result
indicated that the proposed system is suggesting almost all the
necessary JAR files.
Keywords:
Java Archive (JAR); software architecture; class diagram;
code reuse; bytecode analyzing: WordNet; N-gram.

1. Introduction

Developers use external libraries to speed up the
development and decrease Software Project Manufacturing
Costs. It is not an easy process to rightly use libraries from
third parties [1]. When developing software applications,
software developers depend on frameworks and public
application program interfaces. When programming with
an API, customers either have to use existing documents
or codes to direct them in using the target API [2].

 The programmer should have various levels of
knowledge to effectively use certain libraries and sample
code, from the name of a class providing certain
functionality to various methods calling upon multiple
objects performing a particular task [3]. If the developer is
not an expert in the domain of a particular project and
he/she is fresh to the software development process,

including libraries into the project will be a very big
challenge. According to the current state of software
companies, when the software design enters into the
development process, few software libraries need to be
included in starting the development process. If the
company has an expert in the field/ context of the software,
he/she will suggest few appropriate libraries. Otherwise,
the developer needs to download the relevant libraries set
and check the suitability of the libraries with the project to
select relevant libraries. It will be a time-consuming task.
Indeed, in many languages, Java has a unique benefit:
Without recompilation, the Java program operates on
virtually any known software and hardware architecture.
Java encourages reuse by componentization and container
classes JAR (pre-compiled versions of the components)
[4].

When configuring the Java development environment
(installing JDK and JRE), some Java prewritten libraries
will be included by default in JAR format inside the JDK
folder. All Integrated development environments, such as
Eclipse and NetBeans, include all the libraries from JDK
when developing Java projects. All those JAR files
included inside the JDK can be used publically in all the
projects.

Most of the third-party libraries which are in JAR
archive file format are not available inside JDK. But, those
libraries are available on some websites as free. Selecting
suitable libraries from those websites is challenging unless
the developer of the project is an expert in the project
context.

 On the other hand, if all the necessary JAR files for a
project are known before the implementation process, one
of the software project management and comprehension
tool like “Apache Maven” can be used via mentioning all
the necessary JAR files inside the “Dependency” tag of
POM.XML file in the project. All the dependency fill will
be automatically added when executing the project using
the project management and comprehension tool. If the
developer does not know about the necessary JAR files
before the implementation process, using the tool
mentioned above is meaningless.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

192

This paper proposes a framework to suggest JAR files
automatically based on the information extracted from the
given software architecture (Class diagram). The overall
idea is to extract information from given software
architecture (Class diagram), search and download all the
related JAR files from the internet based on the extracted
information, and analyze the suitability of all the
downloaded JAR files with the given software architecture,
select the most relevant JAR files among them via rating
them in the analyzing process, and finally, suggest the
selected JAR files as suitable libraries for the given
software architecture.

The remainder of the paper is organized as follows.
Section 2 presents the Literature review of this study,
Section 3 describes about the proposed system, giving an
overall picture, describing how information is collected
from software architecture and how it can be used to
download JAR files, how to analyze those downloaded
JARs and how to select most relevant JAR files. Section 4
reports the result and evaluation. After a discussion in
Section 5, Section 6 concludes.

2. Literature review

There is no fully related research to this study, but there
are few relevant works. This work included some
techniques used in our earlier work [5]. Erik Linstead and
et al. said that automated analysis is essential to drastically
growing software repositories to understand software
structure, function, complexity, and evolution [6].

Selene is a Code Recommendation System to suggest
code while typing anything in IDE (ECLIPSE) from code
repositories based on typed text in IDE. The most relevant
code is selected by giving a local similarity [3]. Anh Tuan
Nguyen and et-al. said that the present projects use
Application Programming Interfaces (APIs) widely: even
the "HelloWorld" program invokes an API strategy. In their
research, they have proposed a tool APIREC, based on the
programming code changes, the proposed tool suggests the
most relevant API calls. They have used the n-gram
technique and some other machine learning techniques [7].

Another study performed by Santiago Vargas-Baldrich
and others [8] on bytecode analysis and dependencies of
open-source tags or categories defining features like
application domains, programming languages, operating
systems, etc. in the fields of browsing improving, looking
for, and finding processes in large repositories. They
developed a novel approach called SALLY to automatic
tagging of closed-source (only bytecode is available)
projects.

A. T. Nguyen and T. N. Nguyen have suggested
another two novel approach and tools such as GraLan and
ASTLan for API recommendation. GraLan, a graph-based
statistical language model, suggests API based on the
calculation of appearance probabilities of source code

corpus. They build an API suggestion engine using GraLan
and ASTLan supports the suggestion of common syntactic
templates. In this research, the said that n-gram statistical
language model faces challenges in catching the patterns at
more elevated levels of abstraction because of the
crisscross between the sequence nature in n-grams and the
structure idea of syntax and semantics in source code [9].
Through their suggested API suggestion engine, they
overcome the challenges mentioned above. Their approach
deals with the program inside the IDE, but we search
libraries from the internet, in that context, we need the
n-gram technique.

In another research, the same problem was handled by
Xiaoyu Liu and et-al. [10] but they start from the result for
the API recommendation while API calls of top-10 API
candidates identified by GraLan [9], but they did not rely
on code change history. They eliminate the weakness of
GraLan by employing a discriminative re-ranker. In this
way, they suggested a tool called RecRank, a novel
discriminative positioning methodology that utilizes a
novel sort of highlights dependent on using ways to
naturally suggest top-1 APIs dependent on the top-10 API
applicants recommended by GraLan.

Another study conducted by Hussein Alrubaye and et-al.
about third-party library migration. As there was an urgent
need to support developers in migrating their third-party
libraries, they have developed a tool called MigrationMiner.
The tool using Abstract Syntax Tree (AST) code
representation to do migration between two third-party
libraries. They give GitHub open source projects as input,
and the MigrationMiner extracts the following information
from software projects such as, commit ID, commit date,
developer name, and commit description. Using the
information mentioned above, the MigrationMiner detects
migrations between third-party Java libraries [11].
NonDex is a tool for detecting and debugging wrong
assumptions on Java APIs. This means, sometimes client
code can fail by applying an underdetermined API.
NonDex helps to proactively detect and debug such fails.
The tool was designed to detect the wrong assumptions by
analyzing the behavior in the execution time [12].
Massimiliano Di Penta and et al. [4] proposed an
automatize approach to identify the license of JAR
achieves combining code-search engine use with the
automated classification of licenses found in the JAR's text
files. For this task, they used information decompiled from
the bytecode of its classes to query a code search engine,
such as class name and package name.
For most of the bytecode analyzing project, the ASM
Bytecode Manipulation Framework is used to obtain class
names, class fields, method names, and method arguments
from bytecode [13] And Apache Lucene [14] is used to
split the extracted identifiers from bytecode by camel case
and stemmed.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

193

3. Proposed system and methodology

The proposed system JarBot is the modified version of
our earlier work [5] which suggests relevant source code
files and source code snippets from source code forges
(GitHub, SourceForge, and etc.) when a software
architecture enter into the development process. But, most
of the Java libraries are in JAR archive file format, our
earlier developed framework will not suggest the
necessary JAR files. Therefore, the proposed system in
this paper includes a few more fresh pieces of software
components to handle JAR achieve files.

3.1 Proposed System

The JarBot includes several pieces of software
components. The system starts with software architecture
(Class diagram) in XML format to extract few information
(class name, methods name, and attributes name) to do the
JAR files suggesting process. The following are the
proposed system's major processes, I. Extracting important
information from the given XML file (Class diagram), II.
Crawl some JAR files from the internet based on the
information extracted from the given software architecture,
III. Extracting information from the downloaded JAR files,
IV. Identifying the most relevant JAR files via comparing
both information extracted from the given software
architecture and downloaded JAR files.

Fig 1. Data flow diagram of the proposed system

Figure 1 describes the data flow diagram of our

proposed system. It starts with a software architecture
(class diagram) in XML format, extract information from
the architecture, crawl few JAR files based on the
information extracted from the architecture, extract data
from downloaded JAR files, compare the both information
extracted from given software architecture and
downloaded JAR files to identify the most relevant JAR
files, and finally, suggest the set of suitable JAR files to
the given software architecture.

3.2 Methodology

The JarBot starts with an XML file (class diagram),
and information from the file is the input and starting point
of our proposed system. The following module is the
essential part of the proposed system.

XMLExtractor – For this module, we used the module
created in our earlier work, the detailed information about
the XMLextractor available in our earlier work [5]. The
javax.xml package was used to implement this module,
which has two main classes: DocBuilder: Define the
API for obtaining DOM instances from the XML
document DOCBUILDERFactory: define the API for the
creation of the DOM objects tree from the XML
documents. The purpose of this module is to extract
information from the software architecture.

Java2s and jar-download Crawlers – Two
specialized crawlers were created for downloading
relevant JAR files. There are so many websites for
downloading JAR files, but java2sand jar-downloadare
two websites that make the downloading process easy. The
JSOUP library is used to develop the crawlers mentioned
above. Normally, the crawler starts with a keyword and a
seed URL, the information extracted from the given
software architecture are the keywords, and the URLs of
the websites mentioned above are the seed URLs.

JARExtractor – This module aims to unpack the
downloaded JAR files and extract information from them.
All the JAR files have “META-INF” folder in them. Some
JAR files are having “.txt” files while some are having
“.MF” files inside the “META-INF” folder. The
JARExtractor module collects some information from
those “.txt” and “.MF” files.

ASMExtractor – Along with the information collected
using JAR Extractor, a few more information (class names,
class fields, method names, and method arguments) need
to be collected from all the class files (.class bytecode
files) are included inside all the JAR files. ASM Bytecode
Manipulation Framework is used to implement this
module to accomplish the task mentioned above.

ApacheLuceneSplitter – Most of the identifiers (class
names, class fields, method names, and method
arguments) obtained from all the downloaded JAR files
using ASMExtracter were connected words (e.g.
ListView(), lstCon, and writeTag()). This module
implemented using Apache Lucene to split the identifier,
which are connected words.

WordIdentifier – The results of the
ApacheLuceneSplitter module were few real dictionary
words and some meaningless abbreviated identifiers. The
purpose of the WordIdentifier module is to identify the
real meaningful words from the meaningless abbreviated
identifiers obtained by the ApacheLuceneSplitter. If the
abbreviated term cannot be identified by this module, the
N-gramChunker module is used and again this module will
be used to identify the word. Stanford Spellchecker was
used to implement this module.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

194

N-gramChunker – As discussed earlier, the
WordIdentifier identifies the real meaningful word from
the abbreviated term. Sometimes, the WordIdentifier
cannot identify the meaningful words from the abbreviated
term. This module aims to make chunks from the
abbreviated identifiers when the WordIdentifier is unable
to identify the real words. N-gram is an NLP technique,
depends on the value of N and divides a word into chunks.
For example the word is "rect" and N=2, the chunks are
"re", "ec", "ct".

WordNet – WordNet is a lexical database of an
English word and sense relations. A sense is a particular
meaning of a word. WordNet provides the synset for each
sense of a particular word, a list of synonyms for the sense.
This module aims to identify the synonym of all the words
identified from the above process. The JAWS Java library
is used to develop this module. This module is used in two
places in the proposed system: searching JAR files from
the internet and finding a synonym of the words identified
from the downloaded JAR files in the comparison process.

Analyzer – A large number of words will be produced
from the modules mentioned above. The final task is to
analyze the word pool extracted from the download JAR
files and words extracted from the given software
architecture to identify the most relevant JAR files from
the downloaded JAR files. We used an equation (1)
derived in our earlier work [5], where M is denoted marks
are to be given for JAR file, Mi is denoted initial marks
for each iteration, and N is denoted the number of
identifier extracted from the XML file(class diagram), for
assign marks for matching words from the both way
(words from the software architecture and words from the
downloaded JAR files).

 M = Mi + 100 / N. (1)

4. Result and performance evaluation

In this section, the set of experiments conducted on the
proposed system to validate it, evaluate its performance,
and the datasets used to evaluate it are described in detail.

4.1 Input

As described in section 2, the proposed system starts
with software architecture in XML formats. Five
well-completed software system from the GitHub have
been selected and the software design (class diagram) were
drawn for the selected five software system and export it
as an XML file. The details of the necessary JAR files
were collected from the POM.xml files of the targeted
projects from GitHub (because all the targeted projects are
maven projects, and all the necessary JAR files are
indicated inside the dependency part of the POM.xml file).

Table 1 includes the following: all the targeted projects
from GitHub, the sample of the included JAR files and the
sample of the included class files of each project. Table 2

shows all the included JAR files, class files, and methods
inside the targeted 05 projects. The “fastjson” was a bigger
project among the 05 projects, which included 189 classes,
721 methods and 62 JAR files were used to implement the
project. The second largest project was “Minim” which
included 125 classes, 413 methods and 11 JAR files were
used to implement the project.

Table 1. Selected projects and the sample of included jar files and
classes

Projects Name
 Sample

of included classes
Sample

of included JARs

fastjson JSONPatch,
AnnotationSerializer
, ClassWriter

plexus-compiler-java
c, javax.servlet-api,
retrofit

AdyenPayments Credentials,
Payment,
RetrieveRecurringC
ardDetails,
Credentials

adyen-axis-ws-client
, commons-codec,
wsdl4j

JFeatureLib ThreadWrapper,
LaplaceFilter,
FuzzyOpponentHist
ogram

Imageanalysis, lire,
args4j, commons-io

Minim AudioListener,
AudioRecordingStre
am, AudioOut

Jl, tritonus-share,
mp3spi

soundcloud Playlist,
SoundCloud, Track

com.soundcloud.api,
gson, httpclient

The class names and the method names of the targeted

05 projects were used to draw the class diagram for the
targeted 05 projects, after drawing the class diagrams of all
the project, converted into an XML file. The XML files
were the input for the proposed system. The expected
output was the 101 number of JAR files.

The drawn class diagrams were given to the proposed
system as input in XML file format. The XMLextractor
module of the proposed system was used to extract
information (class names and method names) from the
given XML files. Most of the extracted information
(identifiers) were connected words. The
ApacheLuceneSplitter module was used to split the
identifier, which are connected words. The extracted and
split word pool were the keywords for the crawler
modules.

4.2 Result of Crawlers

 As described in section 2, the JarBot is having two types
of crawler, which are Java2s and jar-download for the two
selected websites. The inputs for the crawlers are the
information extracted from the given software
architectures (class diagrams), and the seed URLs were the
URL of the two websites mentioned above. Both the
crawlers fetched 423 JAR files all together for the given
information from both targeted web site. There were 97
expected JAR files in the downloaded JAR files pool out
of the expected 101 JAR files.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

195

Table 2. Details of the jar files, classes, and methods are included

in all the targeted projects from GitHub
Projects Name Number of

JAR files

Number of

Classes

Number of

Methods

fastjson 63 189 721

Adyen 08 08 13

JFeatureLib 13 77 264

Minim 11 125 413

soundcloud 06 06 192

4.3 Result of other modules of the proposed system

After the crawling process, the rest of the proposed
system modules start from the output of the two types of
crawlers, which are a pool of JAR files. The JARExtractor
has taken all the 423 JAR files one by one, unpacked them,
and extracted few information via analyzing the “.txt” and
“.MF” files of “META-INF” folder of those JAR files. The
extracted information was the actual name of the JAR file,
packages name and the implementation vendor details.
The extracted information was a collection of words.
Through this process, 2087 words were collected from
those downloaded 423 JAR files. Those words were
directly sent to the analyzing phase.

JAR files consist of binary files. The ASMExtractor
was used to extract information (class names, class fields,
method names, and method arguments) from binary (.class
files) files. The module collected 9723 words. There were
2103 real meaningful words and 7620 connected words.
The real meaningful words were directly sent to the
analyzing process and the connected words were
transferred to the ApacheLuceneSplitter, N-gramChunker
and WordIdentifier modules. Through those processes
17227 words have been produced. All those words were
used in the analyzer for ranking. Table 3 shows the details
about those words' information.

The analyzer used WordNet to get synonym of all the
words. In the ranking process, the words extracted from
the given software architecture have been taken one by one
and compared with the words extracted from the
downloaded JAR files. If the words are matched with each
other, marks will be assigned for that. If the words are not
matched, the synonym of the words taken by using
WordNet, and then do the same process.

The JAR files that achieved maximum marks have
been selected through the processes mentioned above,
which were 97 JAR files among 423 Downloaded JAR
files. But the number of JAR files expected was 101, and
the suggested number of JAR files was 97. The proposed
framework failed to suggest 04 number of JAR files.

Table 3. Details about downloaded jar files
of

Downloaded
JARs

Words
from

META-INF
folder

of words
from .class

files

of Real
meaningful

words

of
connected
words, &

Real
words

produced
from them

423 2087 9723 2103 7620,

17227

5. Discussion

 Research implications. The findings of our
research aim show that suggesting related JAR files when
a software architecture enter into the development process
is time-consuming and most difficult unless the developer
is experienced and familiar in the context of the software
project. The challenge mentioned above is very common
for novice developers working in a complex and large
software project. The proposed system is a very good
solution for them, when using the proposed JarBot, the
time required to find the necessary JAR files is reduced by
automatically suggesting the necessary JAR files within a
short period.

We hope our study will draw new directions for
assessing the value of the search-based JAR file
suggestions. In addition, the Apache Lucene and ASM , as
used in JarBot, is more effective and efficient than using
our earlier criteria (In our earlier work [5], our own
developed camel case and explicit splitter were used to
handle the connected words). A considerable performance
increase is noticed in JarBot via using Apache Lucene and
ASM in some modules.

Moreover, the JarBot helping the developer to
complete the software project within the targeted time via
automatically attach the necessary JAR files. And the other
advantage is that software projects are being developed
with quality assurance because JarBot will suggest the
well completed and well relevant JAR files from the
selected websites. Therefore, JarBot can be highly
recommended for novice developers who can work as
trained and experienced software professionals, saving
considerable time and money for the project which is large
or small and complex or simple projects in which they
work. The developers can benefit in another way using
JarBot, i.e., by anticipating the required JAR files in
advance (before the software architecture inserts into the
JarBot) and comparing the incoming answer from the
JarBot, and improving themselves.

Practical implications. In the software development
process, JarBot can identify JAR files when giving a
software architecture (class diagram) in XML format.
Developers can make their programs more robust with this
framework.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

196

Developers can use this proposed framework to
correctly suggest and handle the necessary JAR files
within a short period than a developer takes by doing the
same process manually. The evaluation phase of this study
proved that the JarBot could suggest more than 95% of the
necessary JAR files. Also, the testing phase of this study
proved that all the modules of JarBot, such that
XMLExtractor, crawlers, JARExtractor, ASMExtractor,
ApacheLuceneSplitter, WordIinder, N-gramChunker, and
Analyzer are working perfectly. Without the high accuracy
of the modules mentioned above, it was impossible to
suggest more than 95% of the expected JAR files by the
JarBot.

The usage of the WordNet and the N-gram greatly
reduces the chances of necessary JAR files going wrong
and missing. Because N-gram technique help to identify
the real words from all the abbreviated identifiers. And the
usage of WordNet provides a synset (a list of synonyms)
for each word in the analyzing process. In this way, the
probability of missing or going wrong of necessary JAR
files was very less.

Limitation of this research. The main limitation of this
work is that the proposed system is only suitable for Java
programming language because it is fully based on JAR
file (Java Achieve) suggestion. Another limitation of the
JarBot is which starts the process with the software
architecture, in this work, the class diagram is only used as
software architecture, and other diagrams also can be used.
But all the software architecture needs to be given in XML
format. The next limitation of the work is that though there
are several websites for JAR file download, the JarBot
included only two websites, such as java2s and
jar-download. The next limitation is what we say, even if
some words have more than ten synonyms, by default, the
WordNet will answer only ten synonyms. All the
limitations mentioned above can be broken via future
modification of the JarBot.

6. Conclusion

Novice developers face difficulties when finding
necessary JAR files for a Java software project when a
software architecture enters into the development process.
In this paper, we presented a framework, JarBot, to
automatically suggest the necessary JAR files for given
software architecture in XML format in the development
process. The JarBot includes modular architecture with
many components such as XMLExtractor, crawlers,
JARExtractor, ASMSplitter, ApacheLuceneSplitter,
WordIdentifier, N-gramChunker, and Analyzer. Each
module mentioned above is interdependent, and the output
of one module is input to another module. We validated
the JarBot against 05 well completed Java software
projects, targeting used JAR files in those selected projects.
The software architectures (class diagrams) for the
selected 05 Java projects were designed and exported as

XML files. And then, the software designs were given as
input to the JarBot. The JarBot has suggested more than
95% of the expected JAR files. Our results show that
JarBot efficiently suggests the necessary JAR files for
software architecture in the development process.

In the future, we aim to extend JarBot along the
following dimensions: (i) introduce support for all the
diagrams as software architecture, (ii) to cover other all
websites which are providing JAR files download, (iii)
enable JarBot to use all the list of synonym of a particular
word using in analyzing process.

References
[1] M. Kechagia, X. Devroey, A. Panichella, G. Gousios, and A.

Van Deursen, “Effective and efficient API misuse detection
via exception propagation and search-based testing,” ISSTA
2019 - Proc. 28th ACM SIGSOFT Int. Symp. Softw. Test.
Anal., pp. 192–203, 2019, doi: 10.1145/3293882.3330552.

[2] M. Lamothe and W. Shang, “Exploring the use of automated
API migrating techniques in practice,” Proc. 15th Int. Conf.
Min. Softw. Repos. - MSR ’18, pp. 503–514, 2018.

[3] N. Murakami and H. Masuhara, “Optimizing a search-based
code recommendation system,” 2012 3rd Int. Work. Recomm.
Syst. Softw. Eng. RSSE 2012 - Proc., pp. 68–72, 2012, doi:
10.1109/RSSE.2012.6233414.

[4] M. Di Penta, D. M. German, and G. Antoniol, “Identifying
licensing of jar archives using a code-search approach,” Proc.
- Int. Conf. Softw. Eng., pp. 151–160, 2010, doi:
10.1109/MSR.2010.5463282.

[5] P. Pirapuraj and I. Perera, “Analyzing source code identifiers
for code reuse using NLP techniques and WordNet,” 3rd Int.
Moratuwa Eng. Res. Conf. MERCon 2017, no. May, pp.
105–110, 2017, doi: 10.1109/MERCon.2017.7980465.

[6] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi,
“Mining concepts from code with probabilistic topic
models,” ASE’07 - 2007 ACM/IEEE Int. Conf. Autom. Softw.
Eng., no. January, pp. 461–464, 2007, doi:
10.1145/1321631.1321709.

[7] A. T. Nguyen et al., “API code recommendation using
statistical learning from fine-grained changes,” Proc. ACM
SIGSOFT Symp. Found. Softw. Eng., vol. 13-18-Nove, pp.
511–522, 2016, doi: 10.1145/2950290.2950333.

[8] S. Vargas-Baldrich, M. Linares-Vásquez, and D. Poshyvanyk,
“Automated tagging of software projects using bytecode and
dependencies,” Proc. - 2015 30th IEEE/ACM Int. Conf.
Autom. Softw. Eng. ASE 2015, pp. 289–294, 2016, doi:
10.1109/ASE.2015.38.

[9] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical
language model for code,” Proc. - Int. Conf. Softw. Eng., vol.
1, pp. 858–868, 2015, doi: 10.1109/ICSE.2015.336.

[10] X. Liu, L. G. Huang, and V. Ng, “Effective API
recommendation without historical software repositories,”
ASE 2018 - Proc. 33rd ACM/IEEE Int. Conf. Autom. Softw.
Eng., pp. 282–292, 2018, doi: 10.1145/3238147.3238216.

[11] H. Alrubaye, M. W. Mkaouer, and A. Ouni,
“MigrationMiner: An Automated Detection Tool of
Third-Party Java Library Migration at the Method Level,”
Proc. - 2019 IEEE Int. Conf. Softw. Maint. Evol. ICSME
2019, pp. 414–417, 2019, doi: 10.1109/ICSME.2019.00072.

[12] A. Gyori, B. Lambeth, A. Shi, O. Legunsen, and D. Marinov,

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

197

“NonDex: A tool for detecting and debugging wrong
assumptions on Java api specifications,” Proc. ACM
SIGSOFT Symp. Found. Softw. Eng., vol. 13-18-Nove, pp.
993–997, 2016, doi: 10.1145/2950290.2983932.

[13] “ASM.” [Online]. Available: https://asm.ow2.io/. [Accessed:
10-Feb-2021].

[14] “Apache Lucene - Welcome to Apache Lucene.” [Online].
Available: https://lucene.apache.org/. [Accessed:
10-Feb-2021].

P.Pirapuraj received the BSc. In
Computer Science degree, from South
Eastern University of Sri Lanka in 2014
and MSc. in Computer Science in 2017.
He started his academic career as
Demonstrator in Computer Science at
the same university in which he has
completed his first degree. Then he
moved to University of Moratuwa as

Instrictor at the Dept. of CSE of Faculty of Engineering of
University of Moratuwa. Then he joined as Lecture in IT in ATI
Batticalo, Sri Lanka Institute of Advanced Technological
Education, (SLIATE). And he was a Head of the Department of
Dept. of IT of ATOI Batticaloa, SLIATE. Currently he is a
Lecturer in ICT at Faculty of Technology, South eastern
University of Sri Lanka. His research interest includes Software
Engineering, Machine Learning, NLP, and IoT.

ENG. Dr. Indika Perera
received the following degrees:
PhD (St Andrews), MBS
(Colombo), MSc (Moratuwa), and
BSc Eng. (Hons) (Moratuwa) and
he has completed the following
Diploma: PGDBM (Colombo),
MIE (SL), CEng. He started his
career as Lecturer at the same
department of University of

Moratuwa he obtained his first degree. After completing his PhD,
he became Senior lecturer at the same department. Currently he
is the department head of Dept. of CSE, faculty of Engineering,
University of Moratuwa. His research interest includes Software
Engineering, Technology Enhanced Learning, UXImmersive
Environments, and Software Processes.

