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Abstract 
Individuals with visual impairments face numerous challenges in 
their daily lives, with navigating streets and public spaces being 
particularly daunting. The inability to identify safe crossing 
locations and assess the feasibility of crossing significantly 
restricts their mobility and independence. Globally, an estimated 
285 million people suffer from visual impairment, with 39 
million categorized as blind and 246 million as visually impaired, 
according to the World Health Organization. In Saudi Arabia 
alone, there are approximately 159 thousand blind individuals, as 
per unofficial statistics. The profound impact of visual 
impairments on daily activities underscores the urgent need for 
solutions to improve mobility and enhance safety. This study 
aims to address this pressing issue by leveraging computer vision 
and deep learning techniques to enhance object detection 
capabilities. Two models were trained to detect objects: one 
focused on street crossing obstacles, and the other aimed to 
search for objects. The first model was trained on a dataset 
comprising 5283 images of road obstacles and traffic signals, 
annotated to create a labeled dataset. Subsequently, it was trained 
using the YOLOv8 and YOLOv5 models, with YOLOv5 
achieving a satisfactory accuracy of 84%. The second model was 
trained on the COCO dataset using YOLOv5, yielding an 
impressive accuracy of 94%. By improving object detection 
capabilities through advanced technology, this research seeks to 
empower individuals with visual impairments, enhancing their 
mobility, independence, and overall quality of life. 
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1. Introduction 

In recent years, there has been ongoing research and 
development in the field of applications and digital devices 
aimed at serving people with visual impairments. In the 
research that was done in 2021 by Senjam, S., et al. [11], 
researchers mentioned that smartphones have gained wide 
acceptance and are now less stigmatized compared to 
traditional assistive devices. Additionally, the number of 

apps specifically designed for people with visual 
impairments is rapidly increasing. For example, there are 
applications like VoiceOver, Aipoly Vision, TapTapSee, 
Be My Eyes, Seeing AI, and Seeing Assistant Move. 
However, it is worth noting that most of these apps are not 
considered safe or designed specifically to serve people 
with visual impairments in the process of moving around 
and crossing roads safely. Similarly,  
 

In 2022, Mehmood et al. [16] aimed to understand the 
requirements and challenges faced by blind and visually 
impaired people in the Kingdom of Saudi Arabia regarding 
the availability and use of digital devices and applications. 
To achieve this, an online survey was conducted using 
digital forms, in which 164 participants participated. 
Participants reported using White Cane, mobile phones, 
Envision, Seeing AI, VoiceOver, and Google Maps. 
Mobility emerged as the most common purpose for using 
private devices among participants. Moreover, white canes 
and mobile phones were the basic tools used by the 
visually impaired, at a rate of 49% and 84% of respondents, 
respectively. 
    

Then, in 2009, Jinqiang Bai et al. [1] discussed the use 
of deep learning machines, SLAM algorithms, and OCR 
algorithms in guiding blind people in unfamiliar 
environments. Also, in 2014, Krizhevsky et al. [2] 
proposed the R-CNN algorithm used for detection objects 
and implemented it on the ILSVRC-2010 dataset, 
achieving an error rate of 39.8% and a mAP of 60%. In 
2015, Girshick et al. [3] introduced SPPNet, which was 
more than 20 times faster than R-CNN while maintaining 
the same detection accuracy (VOC07 mAP~=59.2%). 
Although SPPNet improved the detection speed effectively, 
it still had some drawbacks, such as a multi-stage training 
process. Girshick et al. [3] addressed the issues of previous 
methods, and Fast R-CNN demonstrated significant 
improvements in training and testing speed. It trained the 
VGG16 network much faster than both R-CNN and 
SPPnet, achieving a training speed that was 9 times faster 
than R-CNN and 3 times faster than SPPnet. At test time, 
Fast R-CNN was 213 times faster than R-CNN and 10 
times faster than SPPnet. Additionally, Fast R-CNN 
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achieved a higher mean average precision (mAP) on the 
PASCAL VOC 2012 dataset compared to R-CNN and 
SPPnet.  
      

There was a review conducted in 2015 by Caldini et al. 
[4]. They were talking about an augmented electronic 
travel (ETA) system based on smartphones. By utilizing 
the smartphone's camera and gyroscope sensor, the 
structure-from-motion (SfM) algorithm calculates scene 
depth and estimates rotation between images. Gyro sensor 
data reduces drift errors, so the algorithm generates a 3D 
map by comparing points, estimating the principal matrix, 
and triangulating points. On the other hand, in 2016, 
Khenkar et al. [5] introduced an assistive system. It 
combines GPS technology and a novel obstacle detection 
method to make intelligent navigation decisions. The 
research used a dataset of around 52,000 classified images, 
categorized as obstacles and non-obstacles. A supervised 
machine learning approach using decision trees generates 
prediction models.  
      

In addition, in 2017, Coughlan J. et al. [6] developed a 
system to assist individuals with visual impairments. The 
system was tested on blind volunteers in various indoor 
and outdoor environments. Moreover, in 2018, Ghilardi et 
al. [7] focused their research on assisting blind individuals 
in safely crossing the road. The study develops a system 
that utilizes a dataset called PTLD, which comprises 4,399 
classified images of pedestrian traffic categorized into 
"GO," "STOP," and "OFF" states. The study evaluates the 
performance of different object detection models, 
including Faster R-CNN, YOLO Full, YOLO Tiny, and 
SSD. The SSD model achieves the highest average mean 
precision (mAP) and average precision (AP) across all 
classes, indicating its superior performance in accurately 
detecting pedestrians and their states, contributing to safer 
road crossing for blind individuals. Then, in 2019, 
according to Abdul Muhsin M. et al. [8], the research aims 
to assist visually impaired individuals in navigating and 
identifying objects in their surroundings using the YOLO 
(You Only Look Once) object detection algorithm on a 
Raspberry Pi 3 using Python and OpenCV. Likewise, in 
2021, based on the research that was done by Miss 
Rajeshvaree et al. [9], their study introduces an object 
detection system that uses the YOLO algorithm and text-
to-speech technology to detect objects by using a camera. 
It uses a COCO data set, and the system provides audio 
announcements to the blind about the object locations and 
image. The results show that it processes 45 frames per 
second, so it's incredibly fast and also efficient because it 
predicts more than one object from a single image. 

However, in 2021, Montezuma et al. [10] focused on 
testing and comparing the results between two devices, 
Orcam MyEye 1 and Seeing AI, to ensure that the two 
applications accurately perform tasks and serve people 

with visual impairment. Both applications achieved over 
95% accuracy for plain text documents; however, accuracy 
dropped to a range of 13% to 57% for text formatted on 
curved surfaces. Participants successfully completed 71% 
and 55% of tasks using Orcam MyEye 1 and Seeing AI, 
respectively. In a similar vein, in 2021, Salunkhe et al. [12] 
developed an Android-based object recognition application 
that utilizes the smartphone's camera to capture real-time 
images, which are processed using TensorFlow's object 
detection API, specifically the SSD algorithm. Detected 
objects are then converted into audio output through 
Android's text-to-speech library. The system achieved an 
overall accuracy of around 90% based on experimental 
evaluations. 

 
There is also research; in 2022, See A et al. [13] 

proposed a system that integrates obstacle detection and 
object detection into a single application. The paper 
utilizes a deep learning model and the YOLO v3 
framework for multi-object detection. The obstacle 
detection is based on the ARCore Depth Lab API by 
Google, which generates a 3D depth map using a depth-
from-motion algorithm. determines the obstacle's location 
and provides audio warnings. The object detection feature 
utilizes the TensorFlow Lite framework and a trained 
model called COCO SSD MobileNet v2. The database 
enables over 90 different classes of objects; this model can 
detect objects from a custom training database and identify 
their categories. Furthermore, in 2022, Patil et al. [14] 
discussed a mobile application that integrates multiple 
functions. The application utilizes artificial intelligence 
and machine learning techniques, including the YOLOv3 
algorithm for object recognition, which is known for its 
speed and accuracy. Additionally, the application 
incorporates a currency recognition model using 
TensorFlow and a dataset from Kaggle, consisting of over 
1,000 different objects.  
    

Furthermore, in 2022, Aniket Birambole et al. [15] 
proposed the Single Shot Multibox Detector (SSD) 
algorithm to detect objects in real-time. The experimental 
setup includes the use of TensorFlow, a deep learning 
library from Google, and training the neural networks on a 
dataset of images. The results demonstrate improved 
accuracy and efficiency in object detection compared to 
previous approaches in the same domain. Additionally, in 
2023, Kuriakose et al. [17] highlighted the limitations of 
current navigation assistants, specifically their lack of 
portability and comfort. To tackle this issue, the 
researchers developed an application called DeepNAVI. 
They conducted tests using custom datasets consisting of 
20 different types of obstacles and 20 scene categories 
relevant to navigation. The obstacle detection and scene 
recognition tasks were performed using deep neural 
networks, specifically the YOLO and Faster R-CNN 



IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 
 

 

3 

 

algorithms. Moreover, the results demonstrated an 
accuracy of 87.8% in obstacle detection and 85% in scene 
recognition. Furthermore, in 2023, Sarmah et al. [18], 
Proposed a system Object detection and conversion of text 
to speech systems for visually impaired individuals were 
developed using the YOLOv4 model for object detection 
and the gTTs module for text-to-speech conversion. The 
results showed high performance, with an average 
processing time of less than three minutes for A4 paper 
and an error rate of 2%.  
 
      Previous research in our field has highlighted a 
significant gap concerning the safe crossing of roads, 
including the real-time detection of obstacles and traffic 
signals. Additionally, there is a lack of integration of voice 
command functionality to assist visually impaired 
individuals in searching for specific objects in their 
immediate surroundings. By addressing these research 
gaps, we aim to empower visually impaired individuals to 
autonomously navigate public spaces, enhancing their 
safety and overall quality of life.  
 

2. DATASET 

A. COCO (Common Objects in Context)  

Is a large-scale object detection dataset created by 
Microsoft Research in 2014; it consists of 80 labels and 
330k images. Dataset having annotations for object 
detection, segmentation, and captioning tasks [19]. 

 

B. Street crossing and street obstacles dataset: 

The street crossing dataset and the street obstacles 
dataset were both collected from various sources, 
including Roboflow [20] and the Google image search 
engine. These datasets were categorized. In the street 
crossing dataset, the categories included pedestrian lines 
that alert and guide visually impaired individuals of the 
presence of the street, vehicles and cars encountered 
during road crossings, and traffic signals with colors 
indicating stop, caution, and go. On the other hand, the 
street obstacles dataset encompassed potholes, vehicles, 
traffic cones, road barriers, and natural obstacles like 
branches and trees. Each category in both datasets 
comprised 500 images, meticulously selected to provide a 
diverse and balanced dataset for training our model. 

1) Image Labeling Using RoboFlow:  
We conducted the image labeling process manually 

using RoboFlow. We carefully assigned 10 classes to the 
images. As shown in Table 1, these classes were selected 
to distinguish various objects commonly encountered on 
the roads. Some of them are used for detecting obstacles, 
while others are related to crossing road. We then created 

annotations for each image by accurately identifying the 
objects depicted in them, as shown in Figures 1 and 2. 

 

TABLE 1. THE DATASET CLASSES 

CLASS PURPOSE 

Bicycle detect obstacles / crossing the road 

Barrier detect obstacles 

Crosswalk crossing the road 

Car detect obstacles for crossing the road 

Green traffic light crossing the road 

Red traffic light crossing the road 

Yellow traffic light crossing the road 

Traffic comes detect obstacles 

Potholes detect obstacles 

Tree detect obstacles 

 

Fig.1. some example of class before labeling 

 

 

 

Fig.2. some example of classs aftar labeling 

      
The final result after the labeling process is that the 

dataset consists of a total of 5283 images, which have been 
divided into three distinct sets: the training set, the 
validation set, and the test set. The training set comprises 
4253 images, accounting for 81% of the dataset. The 
validation set contains 629 images,   representing 12% of 
the dataset. Finally, the test set consists of 401 images, 
making up the remaining 8% of the dataset. 
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3. Methodology 

A. YOLO Algorithms  

       YOLO (You Only Look Once) is an object detection 
algorithm. It is an innovative approach in the field of 
object detection, aiming to achieve fast and accurate 
detection of objects in images. Instead of dividing the 
image into small regions and analyzing them separately, 
YOLO divides the image into a grid of cells and performs 
object predictions directly on these cells [21]. 
 

1) YOLOv5 

  YOLOv5 belongs to the YOLO (You Only 
Look Once) series, renowned for its object detection 
capabilities in images and videos. It's designed to enhance 
both performance and speed in identifying objects. This 
model partitions the image into a network of backbone 
networks and employs deep neural network techniques to 
efficiently recognize and categorize objects within the 
image. A distinctive feature of YOLOv5 is its single-stage 
architecture, which enables direct object detection from 
the image without intermediate steps.[22]   
  
 
    Building on the YOLO detection framework, YOLOv5 
incorporates several convolutional neural network 
optimization strategies, such as auto-learning bounding 
box anchors, mosaic data augmentation, and the cross-
stage partial network. The YOLO model set a precedent by 
being the first object detector to integrate the prediction of 
bounding boxes with class labels in an end-to-end 
differentiable network. By leveraging deep learning on 
extensive labeled datasets, YOLOv5 becomes proficient in 
identifying a variety of objects, including people, cars, and 
animals etc., [23]. 
 
      The architecture of YOLOv5 comprises three main 
components: the backbone, the neck, and the output. 
Initially, the input terminal handles data preprocessing 
tasks like mosaic data augmentation and adaptive image 
filling. To ensure adaptability to various datasets, 
YOLOv5 features adaptive anchor frame calculation on 
the input, automatically setting the initial anchor frame 
size when the dataset changes. The backbone, such as 
CSPDarknet, is responsible for extracting fundamental 
features from the image, while the neck aggregates these 
features and channels them to the output layers [24]. 
 
    Known for its high performance and rapid inference 
speed, YOLOv5 is well-suited for real-time applications. 
 
 

2) YOLOv8 

 YOLOv8 marks a significant milestone in the 
evolution of the YOLO model series, introducing several 
key advancements. The utilization of anchor-Free-boxes 
represents a fundamental shift in object detection 
methodology. By directly predicting object centers, this 
approach simplifies the model's architecture and expedites 
the Non-Maximum Suppression (NMS) process during 
post-processing, thereby enhancing overall efficiency [25] . 
Additionally, YOLOv8 incorporates the C2f module 
instead of the previous C3 module. This module combines 
the outputs of all bottleneck modules, leading to improved 
model performance. Consequently, the training process is 
accelerated, and gradient flow is enhanced, resulting in 
heightened precision and efficiency in object detection 
tasks [26]. 
 
 In the architecture of YOLOv8, the backbone 
network serves as the cornerstone, tasked with extracting 
features from input images. YOLOv8 adopts 
CSPDarknet53, a variant of Darknet, as its backbone, 
introducing a Cross-Stage Partial (CSP) connection to 
enhance information flow between network stages and 
improve gradient flow during training. Moving to the neck 
and head structures, YOLOv8 integrates a Path 
Aggregation Network (PANet) as the neck, facilitating 
effective information flow across different spatial 
resolutions to capture multi-scale features efficiently. The 
head structure comprises multiple detection heads, each 
responsible for predicting bounding boxes, class 
probabilities, and objectness scores at various scales. The 
true innovation lies in the detection head of YOLOv8, 
featuring a modified version of the YOLO head that 
incorporates dynamic anchor assignment and a novel 
Intersection over Union (IoU) loss function. These 
enhancements result in more precise bounding box 
predictions and improved handling of overlapping objects, 
marking a significant advancement in object detection 
capabilities [27]. 
 

B. Training Methodology 

1)  Crossing the road Model: 

        The crossing-the-street model was trained on both 
YOLOv5 and YOLOv8 architectures with the objective of 
achieving the highest accuracy between them. The training 
process utilized a predetermined set of hyperparameters, 
including a learning rate of 0.001 and a batch size of 16, 
over the course of 150 epochs. The dataset employed for 
training comprised 3000 samples. Subsequently, the 
model's performance was evaluated on a separate test set 
consisting of 700 samples and validated on an additional 
set of 700 samples as shown in Table2. 
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2) Search for Object Model: 

  The search for object model utilized the YOLOv8 
architecture and was trained on the Common Objects in 
Context (COCO) dataset [19]. This dataset comprises 80 
distinct classes and a total of 100,000 images, partitioned 
into 70,000 training samples, 20,000 validation samples, 
and 10,000 testing samples. The training of the model 
involved the specification of hyperparameters, namely a 
learning rate of 0.001 and a batch size of 16 across 150 
epochs, as shown in Table 3. 

 

TABLE 2.THE HYPERPARAMETERS SET DURING CROSSING 
THE ROAD MODEL MODELTRAINING 

 
Hyperparameter Value for 

Yolov8 
Value for 
Yolov5 

Input image size 640 640 
Epochs 150 100 

Batch size 16 16 
Optimizer SGD SGD 

Initial learning rate 0.01 0.01 
final learning rate 0.01 0.01 

Momentum 0.937 0.937 
Weight decay 0.0005 0.0005 

 
 
TABLE 3.THE HYPERPARAMETERS SET DURING SEARSH FOR 

OBJECT MODELTRAINING 
 

Hyperparameter Value for Yolov5 
Input image size 640 

Epochs 100 

Batch size 16 

Optimizer SGD 
Initial learning rate 0.01 

final learning rate 0.01 

Momentum 0.937 

Weight decay 0.0005 
 
 

C. Training Environment: 

      In order to train a model, high computational resources, 
such as GPUs, are required. We utilized Google Colab, a 
cloud-based platform that allows the execution of Python 
code, for training our models. Google Colab provides a 
free GPU T4 graphics card with a VRAM of 12GB. For 
some experiments that were taking longer, we opted for 
the paid version, Colab Pro, which offers more options for 
powerful GPUs. Colab Pro comes with GPU V100 and 
GPU A100, which are faster than GPU T4. Upgrading to 
the Colab Pro version significantly improves the speed of 
the training process. 

D.  Evaluation Metrics 

    Evaluation metrics such as precision (P), recall (R), and 
mAP are commonly used to assess the performance of a 
model in detecting defective fire extinguishers. These 
metrics provide a detailed understanding of the model's 
accuracy and reliability. They are calculated from a 
confusion matrix that includes four important components: 
 
True Positives (TP): instances correctly classified as 
positive by the model, belonging to the positive class. 
False Positives (FP): instances incorrectly classified as 
positive by the model, despite belonging to the negative 
class. 
 
True Negatives (TN): instances correctly classified as 
negative by the model, belonging to the negative class. 
 
False Negatives (FN): instances incorrectly classified as 
negative by the model, despite belonging to the positive 
class. 
 
From these values: 
 

1) Precision =  
்

ା
                                

2) Recall =  
்

ା
                                       

 
Intersection over Union (IoU) is a crucial metric 

in object detection. It measures the precision of a bounding 
box by comparing the overlapping areas between the 
predicted bounding box (Bpr) and the actual bounding box 
(Bgt) with their combined area. The formula for IoU is 
given in Equation 3, and to help understand it better, 
Figure 3 provides a visual representation. 
 

3) 𝐼𝑜𝑈 =
ೝ ∩

∪௧
                                       

 
Fig.3. IoU is the ratio of the intersection area over the union area: (a) 

Intersection area; (b) Union area. 
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The mean Average Precision (mAP) is a metric that 
evaluates the performance of a model. It measures the area 
under the precision-recall curve for each individual class, 
represented by Average Precision (AP) [28]. The mAP is 
then calculated by taking the average of all the individual-
class AP values. The IoU (Intersection over Union) 
threshold of 0.5 is used to indicate the level of overlap 
required between a predicted bounding box and the ground 
truth bounding box. This metric is suitable for a broad 
range of detection applications for both models. 
 
 

4. RESULTS AND DISCUSSION 
 

A. Mean Average Precision and Model Size 
1. Performance Comparison Between YOLOv5s and 
YOLOv8n Crossing Road Detection Models 
 
Table 4 showcases the performance metrics for YOLOv8n 
and YOLOv5s in crossing-road function.  
 

TABLE 4.COMPARISON BETWEEN RESULT YOLOV8N AND 
YOLOV5S MODELS FOR CROSSING-ROAD FUNCTION 

mAP0.5 
(%) 

R P Model 
Size 

(MB) 

Model 

82.4 0.766 0.825 5.9 YOLOv8n 
for crossing 

road 
85.3 0.789 0.753 13.6 YOLOv5s 

for crossing 
road 

 
 

1.1 Mean Average Precision (mAP) 

In the crossing-road detection function, the 
YOLOv5s model outperforms the YOLOv8n model in 
terms of mean average precision (mAP) at the 0.5 IoU 
(Intersection over Union) threshold. Specifically, 
YOLOv5s achieves an impressive mAP of 85.3%, while 
YOLOv8n trails behind with a lower mAP of 82.4%. This 
disparity indicates that the YOLOv5s model is more 
accurate in detecting critical objects related to road 
crossings, such as crosswalks and traffic lights, compared 
to the YOLOv8n model. 

1.2 Recall (R) 

  Examining the recall metric, YOLOv5s once 
again outperforms YOLOv8n. The YOLOv5s model 
boasts a recall of 0.789, meaning it is able to correctly 

identify a higher proportion of the relevant crossing-
related objects present in the test data. In contrast, 
YOLOv8n's recall of 0.766 suggests it has a slightly lower 
ability to detect all the necessary objects for this function. 

 

1.3 Precision (P) 

  While YOLOv5s excels in mAP and recall, the 
YOLOv8n model demonstrates superior precision, with a 
value of 0.825 compared to YOLOv5s's 0.753. This 
indicates that the YOLOv8n model is more accurate in its 
detections, producing fewer false positives than the 
YOLOv5s model. 

1.4 Model Size  

  An important consideration in model selection is 
the size of the model, which can impact deployment and 
resource requirements. In this regard, the YOLOv8n model 
holds a clear advantage, with a compact model size of 5.9 
MB. In contrast, the YOLOv5s model is significantly 
larger, occupying 13.6 MB of storage space. The smaller 
footprint of the YOLOv8n model may be crucial for 
applications with limited computational resources or 
storage constraints. 

In summary, the choice between the YOLOv5s 
and YOLOv8n models for crossing-road detection will 
depend on the specific priorities and trade-offs between 
performance metrics and model size requirements. The 
YOLOv5s model offers higher mAP and recall, while the 
YOLOv8n model excels in precision and has a more 
compact model size. 

    Tables 5 and 6 show the results of YOLOv8n and 
YOLOv5s, respectively, for each class in the crossing-road 
and free-walk functions, with the class names. 

TABLE 5. DETAILED RESULTS ABOUT YOLOV8N FOR EACH 
CLASS  IN CROSSING-ROAD FUNCTION 

mAP0.5(%) R  P  Class 

82.4 0.766 0.825 All 

91.6 0.891 0.872 Bicycle 

82.3 0.772 0.844 Barrier 

93.7 0.962 0.922 crosswalk 

77.5 0.725 0.712 Car 

74.7 0.631 0.768 green traffic light 

88.8 0.812 0.88 red traffic light 

93.7 0.902 0.88 yellow traffic 
light 
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90.2 0.834 0.898 traffic cones 

65.0 0.575 0.764 Pothole 

66.4 0.588 0.712 Tree 

 

TABLE 6. DETAILED RESULTS ABOUT YOLOV5S FOR EACH 
CLASS  IN CROSSING-ROAD FUNCTION 

mAP0.5 (%) R P Class 

85.3 0.789 0.753 All 

96.6 0.939 0.891 Bicycle 

81.3 0.652 0.796 Barrier 

74.1 0.342 0.762 Crosswalk 

88.1 0.924 0.66 Car 

81.9 0.835 0.684 green traffic light 

94.1 0.923 0.796 red traffic light 

95.3 0.952 0.791 yellow traffic light 

85.4 0.789 0.777 traffic cones 

80.7 0.804 0.687 Pothole 

0.753 0.73 0.685 Tree 

 

2. Performance Results About YOLOv5s Searching 
Object Function 
 

Table 7 showcases the performance metrics for 
the YOLOv5s model designed for searching-object.  

 

 

TABLE 7. RESULT YOLOV5S MODELS FOR SEARCHING-OBJECT 
FUNCTION 

mAP0.5 
(%) 

R P  Model Size 
(MB) 

Model 

94.9 0.923 0.889 14.2 YOLOv5s 
for 

searching 
object 

 

2.1 Mean Average Precision (mAP) 

      The YOLOv5s model designed for crossing road 
object detection achieves an impressive mean average 
precision (mAP) of 94.9% at the 0.5 IoU (Intersection over 
Union) threshold.  
 
2.2 Recall (R) 
 

      The YOLOv5s model also demonstrates strong recall 
performance, with a recall value of 0.923. This means the 
model is able to correctly identify a very high proportion 
of the relevant crossing-related objects present in the test 
data, ensuring that it can detect the majority of important 
objects in real-world scenarios. 
 
2.3 Precision (P) 
      
       In addition to its high mAP and recall, the YOLOv5s 
model also shows strong precision, with a value of 0.889. 
This high precision indicates that the model produces 
relatively few false-positive detections. 
 
2.4 Model Size  
      The YOLOv5s crossing road detection model has a 
total size of 14.2 MB. 

 Table 8. displays detailed training results for the 
COCO dataset, which consists of 80 classes. It includes 
precision (P), recall (R), and mAP at 0.5. 

TABLE 8. DETAILED RESULTS ABOUT YOLOV5S FOR EACH 
CLASS  IN OBJECT-SEARCHING FUNCTION 

Class P  R  mAP0.5 (%) 
all 0.889 0.923 94.9 

person 0.972 0.874 95.5 
bicycle 0.964 1 99.5 

car 0.939 0.672 77.6 
motorcycle 0.923 1 99.5 

airplane 0.932 1 99.5 
bus 0.938 1 99.5 
train 0.966 1 99.5 
truck 1 0.861 99.5 
boat 1 0.876 99.5 

traffic light 0.771 0.72 77.5 
stop sign 0.857 1 99.5 

bench 0.982 1 99.5 
bird 0.981 1 99.5 
cat 1 0.916 99.5 
dog 0.958 1 99.5 

horse 0.757 1 99.5 
elephant 0.976 0.941 94.9 

bear 0.761 1 99.5 
zebra 0.905 1 99.5 
giraffe 0.98 1 99.5 

backpack 0.845 0.912 97.2 
umbrella 0.978 0.944 97.8 
handbag 1 0.842 89.7 

tie 0.943 0.857 85.8 
suitcase 0.909 1 99.5 
frisbee 0.975 1 99.5 

skis 0.797 1 99.5 
snowboard 0.837 0.733 91.7 
sports ball 0.829 0.667 67 

kite 0.972 1 99.5 
baseball bat 0.993 1 99.5 

Baseball glove 0.638 0.571 65.8 
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skateboard 0.939 1 99.5 
tennis racket 0.784 0.714 79.4 

bottle 0.866 0.778 91.8 
wine glass 0.756 0.875 90.3 

cup 0.92 0.958 97.3 
fork 0.928 1 99.5 
knife 0.834 0.875 94.9 
spoon 0.874 0.947 94.8 
bowl 0.858 0.866 89.4 

banana 0.803 1 99.5 
sandwich 0.752 1 99.5 

orange 0.898 1 99.5 
broccoli 0.916 1 99.5 
carrot 0.826 1 99.0 

hot dog 0.841 1 99.5 
pizza 1 1 99.5 
donut 0.969 1 99.5 
cake 0.872 1 99.5 
chair 0.943 0.937 98.0 
couch 0.913 1 99.5 

potted plant 0.973 1 99.5 
bed 0.873 1 99.5 

dining table 0.992 1 99.5 
toilet 0.851 1 99.5 

tv 0.84 1 99.5 
laptop 0.745 0.667 80.6 
mouse 0.878 1 99.5 
remote 0.886 0.75 86.3 

cell phone 0.945 0.875 87.8 
microwave 0.884 1 99.5 

oven 0.936 1 99.5 
sink 0.774 0.833 88.8 

refrigerator 0.919 1 99.5 
book 0.951 0.663 88.4 
clock 0.961 1 99.5 
vase 0.847 1 99.5 

scissors 0.212 0.425 49.7 
teddy bear 0.987 1 99.5 
toothbrush 0.921 1 99.5 

 

B. Speed 
 
When it comes to real-time operations, efficiency in 

terms of time is of utmost importance. Table (9) presents a 
breakdown of time allocation for two phases, post-
processing required for the NMS algorithm, and inference 
(time taken for passing the image through the neural 
network).  
For the "Crossing Road" models, YOLOv5s demonstrates 
a total time of 20.4 ms. Conversely, YOLOv8n 
necessitates a total time of 23.6 ms, these results clearly 
indicate that YOLOv5s outperforms YOLOv8n in terms of 
speed, with a lower total time and faster post-processing. 
Therefore, YOLOv5s showcases superior performance 
when it comes to the "Crossing Road" function compared 
to YOLOv8n. 

 
In contrast, concerning the "Search for Object" 

model, YOLOv5s stands out with a total time of 8.6 ms. 
Notably, it is the inference time with 8.2ms, while 0.4 ms 
is dedicated to post-processing. 
 
TABLE 9. DETECTION TIME OF EACH MODEL (USING T4 GPU) 

 
Total 
Time 
(ms) 

Postprocessing 
(ms) 

Inference 
(ms) 

Model 

20.4 2 18.4 
YOLOv5s  

(crossing road) 

23.6 0.4 23.2 
YOLOv8n  

(crossing road) 

8.6 0.4 8.2 
YOLOv5s  
(Search for 

object) 

 

C.  Confusion Matrix 
 

The results of the confusion matrix for each model are 
presented in Figures (4-6), elucidating the results obtained 
at a confidence level of 0.25. The diagonal line in the 
Confusion Matrix represents the instances that have been 
correctly classified by the model, providing a visual 
representation of its accuracy. Crosswalk and barrier 
classes are difficult to detect, which leads to a lower level 
of accuracy. In addition, there was a small percentage of 
misclassification in the classification between green, 
yellow, and red traffic lights.  
 
 

 
 

Fig. 4. Confusion matrix for Yolov(crossing road) 
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Fig. 5. Confusion matrix for Yolov8 (crossing road) 

 
 
 
 
 
 

 
Fig. 6. Confusion matrix for Yolov5 (Search for object 

 

5. CONCLUSION AND FUTURE WORK 

 
The aim of this study is to utilize the YOLO 

algorithm to assist visually impaired individuals in their 
daily lives. The study focuses on two main functions: road 
crossing and object searching. Also, the primary objective 
was to achieve high accuracy and precision for both 
models to enable real-time usage on wearable devices and 
applications. 
Both YOLO versions 5 and 8 were trained for the road 
crossing function using a dataset consisting of 5283 
images. The mAP0.5 achieved for YOLOv8n was 82.4%, 
while YOLOv5s achieved an mAP0.5 of 85.3%. Therefore, 
YOLOv5s demonstrated better detection performance, and 
in terms of model size, it is worth noting that YOLOv8n 
had a smaller model size compared to YOLOv5s, with a 
size of 5.9 MB for YOLOv8n and 13.6 MB for YOLOv5s. 
This emphasizes the efficiency and compactness of 
YOLOv8n, making it more suitable for deployment on 

resource-constrained devices or systems with limited 
storage capacity. 
The third model, YOLOv5s, was trained for object 
searching on the COCO dataset, achieving an mAP0.5of 
94.9%. It showed excellent results, and its model size was 
14.2 MB. 
Our future work is focused on enhancing the accuracy and 
performance of our models, specifically targeting the 
functionalities related to road crossing and object detection. 
In terms of the road crossing feature, we aim to expand the 
training data for both versions 8 and 5 models to 
encompass a broader range of obstacles that were 
previously not included in the dataset. While the current 
dataset primarily focuses on outdoor obstacles like barriers, 
crosswalks, cars, traffic lights (green, red, yellow), traffic 
cones, potholes, and trees, we intend to incorporate 
additional data that includes indoor objects such as doors, 
stairs, and furniture. 
By incorporating a more diverse and comprehensive 
dataset, we aim to improve the models' ability to 
accurately recognize and navigate various obstacles in 
both indoor and outdoor environments. This expansion 
will contribute to a more robust and reliable system that 
can assist individuals in safely crossing roads and 
effectively detecting objects, whether they are indoors or 
outdoors. 

Our ultimate goal is to continuously refine and 
optimize our models to ensure they provide accurate and 
reliable assistance, promoting the independence and 
mobility of visually impaired individuals in navigating 
their surroundings. 
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