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Abstract 
One of the most significant issues in combinatorial optimization is 
the classical NP-complete conundrum known as the 0/1 Knapsack 
Problem. This study delves deeply into the investigation of 
practical solutions, emphasizing two classic algorithmic 
paradigms, brute force, and dynamic programming, along with the 
metaheuristic and nature-inspired family algorithm known as the 
Genetic Algorithm (GA). The research begins with a thorough 
analysis of the dynamic programming technique, utilizing its 
ability to handle overlapping subproblems and an ideal 
substructure. We evaluate the benefits of dynamic programming 
in the context of the 0/1 Knapsack Problem by carefully dissecting 
its nuances in contrast to GA. Simultaneously, the study examines 
the brute force algorithm, a simple yet comprehensive method 
compared to Branch & Bound. This strategy entails investigating 
every potential combination, offering a starting point for 
comparison with more advanced techniques. The paper explores 
the computational complexity of the brute force approach, 
highlighting its limitations and usefulness in resolving the 0/1 
Knapsack Problem in contrast to the set above of algorithms. 
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1. Introduction 
 

Despite rigorous advancement in software and 
hardware resources, the design and analysis of 
algorithms to find the most efficient one has always 
been the hottest area of research in optimization. The 
0/1 The knapsack problem is a classic optimization 
problem in computer science, engineering, and 
combinatorial optimization, with considerable 
importance in various fields, including operations 
research, algorithm design, and theoretical computing. 
This problem can be briefly expressed as follows: 
given a finite set of items, each of which has a certain 
weight and value, determine the optimal selection of 
items to include in a backpack of limited capacity such 

that the total weight does not exceed the capacity and 
the total value is maximized [1]. It is a constrained 
optimization problem that mimics several real-life 
problems, such as revenue enhancement under a fixed 
deposit, and hence needs to be solved effectively.  

In real life, when we want to solve a problem, we 
make a set of steps to solve this problem. Also, there 
are many problems in the technology world, one of 
them being power consumption. Some devices have a 
high power consumption, generating more heat. 
Therefore, companies and enterprises seek to lower 
the power consumed by their devices, and one of the 
essential ways is choosing a suitable scheduling 
algorithm. The software will be implemented to 
provide different scheduling algorithms to analyze 
which one is the best [2-3]. This means the CPU will 
work more efficiently and generate less heat, ensuring 
a potentially sustainable and renewable solution. This 
study aims to ensure that these algorithms provide 
correct results with due efficiency [4]. We are going 
to use Python programming language in this regard. 
This paper is organized as follows. The next section 
describes the methodology we followed in this study. 
Section 3 discusses the companies’ survey results. In 
section 4, we discuss the results of the students’ survey. 
Section 5 summarizes the results and gives some 
recommendations. Finally, in section 6, we give some 
concluding remarks.  
 
2. Background 

 
Algorithms have become a crucial component of 

every subject. From the very beginning, a good 
algorithm ensures great simplifying of things and aids 
in problem-solving. Sort algorithms are a crucial 
component of computer science because they offer an 
organized method of managing and organizing data, 
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from refining data processing to looking for certain 
things in a dataset. Merger algorithms are an example 
of a sorting algorithm, a "divide and conquer" method 
that splits the input in half recursively, sorts each half 
separately, and then combines the sorted halves to get 
the final sorted output [5]. Moreover, the counting 
algorithm is a non-comparison-based sorting method 
that performs well when the input value range is 
constrained by the counting sort [6].  

An algorithm is the most crucial element while 
executing the processes to make sure that the CPU is 
working at peak speed without degrading its 
performance with the possible lowest temperature of 
the CPU; this means the efficiency, response time, and 
throughput are maximized. There are two types of 
scheduling algorithms used, the first type of 
scheduling algorithm is called preemptive, and in this 
type of scheduling, the processes will be interrupted 
based on several parameters, such as the arrival time 
of the process, the priority of the process, and how 
long the process will be executed which is called burst 
time. The second type of scheduling algorithm is non-
preemptive, and in this type of scheduling algorithm, 
the processes will not be interrupted even if their 
parameters are different [7]. Knapsack is an 
optimization algorithm used to solve real-life 
problems involving constraints. They have two 
variants, namely, continuous, fractional knapsack, and 
discrete knapsack. The fractional knapsack is an 
algorithm that allows the fractional values to fill the 
capacity. In the case of a discrete knapsack, either 
element is included or excluded, and no partial values 
are possible [8-10]. In this research, we will use 
dynamic programming to solve the knapsack problem 
to get the maximum profit from diamonds with the 
appropriate weight of the shipment [8]. 

 
3. Methodology 

 
We started by choosing a real-life problem related 

to customs laws. The problem was deciding the 
optimal shipment of diamonds based on the capacity 
of the knapsack the user would provide. 
 
3.1: Dynamic Programming 

Our objective is to evaluate and compare the 
effectiveness of the brute force and the dynamic 
programming approaches in resolving the Knapsack 
problem for optimizing diamond shipment. We 
collected the dataset from Kaggle, which contains 

information about the weight and price of diamonds. 
After that, we selected dynamic programming due to 
its optimal sub-structure, which is a pre-requisite, and 
brute force programming because it exhaustively 
checks all possible combinations and guarantees 
correctness. We implemented both algorithms using 
Python programming language. We measured the 
execution time in three cases, best case, average case, 
and worst case, for each dynamic and brute force 
algorithm. We also analyzed each line in both codes to 
find the total time and space complexity. In addition, 
we measured the order of growth for each of them. The 
results were the time and space complexity for the 
dynamic programming, respectively, O(n×capacity) 
and O(n×capacity). From the literature, it is found that 
the time and space complexity for the brute force 
respectively O(2^n) and O(n) [9].  

Furthermore, we also compared dynamic 
programming and Genetic Algorithms to solve the 0/1 
knapsack problem in terms of space and time 
complexity. We found that if the knapsack problem is 
small to medium-sized and an optimal solution is 
required, dynamic programming may be more 
efficient; for larger instances, genetic programming 
will be better. We made another comparison between 
brute force and Branch and bound to solve the 0/1 
knapsack problem in terms of space and time 
complexity. Branch and bound are more efficient than 
the Brute Force algorithm. To sum up, the space 
complexity, best, average, and worst cases for 
dynamic programming are all O(n×capacity); for brute 
force, the time complexity is O(n), and the rest of the 
cases are O(2^n). Furthermore, dynamic programming 
is more efficient for small to medium-sized instances 
than genetic programming. Moreover, brute force is 
less efficient than Branch and bound. As a result, 
dynamic programming is more efficient in finding the 
optimal solution for the diamond shipment [10]. 

 
3.2: Genetic Algorithms 
The genetic algorithm (or GA) belongs to nature-
inspired, meta-heuristic, and evolutionary algorithms. 
It is a search method used in computing to find 
accurate or approximate solutions to optimization and 
search problems. It is beneficial when the search space 
is ample and the solution is approximal, like minimal 
or maximal. Genetic algorithms are considered to be 
universal search heuristic-based approximators [11-
15]. GA is a particular class of evolutionary 
algorithms that use techniques inspired by 
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evolutionary biology, such as inheritance, mutation, 
selection, and crossover (also called recombination) 
[16-20]. GA is employed as a computer simulation in 
which an inhabitant of intangible representations 
(known as chromosomes or the genotype or the 
genome) of candidate solutions (called individuals, 
creatures, or phenotypes) to an optimization problem 
progresses about improved results. Conventionally, 
results are exemplified in binary as strings of 0s and 
1s, but other presentations are also possible. GA's 
counterpart, the Differential Evolution algorithm, is 
utilized for the same purpose, especially for non-
binary and continuous spaces [25-30]. Figure 1 shows 
the GA working flowchart. It starts with an initial 
population, usually generated randomly around an 
essential seed value, then fitness is evaluated, and 
condition to criterion is checked. If failed, the top 
chromosome is selected, and crossover is performed 
among them based on some techniques. After that, the 
mutation operator is applied, and this is how a new 
generation is generated. The process continues until 
results are found [31-45]. 
 

 
Figure 1: GA flowchart 

 
4. Dynamic programming  
 

As we will see, the 0-1 knapsack problem has 
both the optimal substructure and overlapping sub-
problems needed for dynamic programming. In this 0–
1 knapsack problem, we can either include or exclude 
a diamond from the shipment, but we cannot include 
it entirely or more than once. It uses a 2D table to store 
and reuse intermediate solutions, utilizing optimal 
substructure and overlapping subproblems to achieve 
efficiency through memoization. The retracing stage 

identifies specific components that contribute to the 
best solution. We used Python to solve this problem 
and analyze the time and space complexities. 

 
4.1 Implementation  

Figures 2 and 3 show the implementation of 
dynamic programming in Python. The program takes 
the knapsack's capacity, a dynamic array of items, and 
their weight and values, respectively. Then, based on 
dynamic programming principles, the items are 
selected optimally to fill the knapsack capacity to 
maximize revenue [46-50]. Moreover, in this regard, 
several experiments have been conducted to find the 
optimal value with various instances of the dataset, 
and several analyses have been made, as described in 
the subsequent sections of the article.   
 

 
Figure 2: Dynamic programming implementation 1. 

 
Figure 3: Dynamic programming implementation 2. 

4.2 Best Case Scenario  
A dedicated dataset is provided to the algorithm 

to observe the algorithm in terms of its best case. With 
that dataset, the algorithm is supposed to taper off with 
the minimum amount of time ideally. Here, we have a 
sample of the best case when we have a small dataset 
size (100 diamonds), and the weights and values are 
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not large, it will have the lowest running time, 
measured in milliseconds, as shown in Figure 4.  

 
Figure 4: Best case analysis. 

4.3 Average case scenario  
In the average case analysis, the idea is to provide 

a dataset where the algorithm reaches the final 
solution with an average amount of time. Here, we 
have a sample of the average case. When we have a 
bigger dataset size (250 diamonds) and some large 
weights and values, it will take more running time than 
the best case. It is shown in Figure 5. 

 
Figure 5: Average case analysis. 

4.4 Worst case scenario  
In the worst-case analysis, the idea is to provide 

a dataset where the algorithm reaches the final 
solution in the shortest time. Here, we have a sample 
of the worst case, which has a much bigger dataset size 
(500 diamonds) and large weight and values; it will 
have the longest running time. In practice, an 
algorithm is selected based on its worst-case running 
time. That algorithm performs well in the worst-case 
scenario and is considered the best [51-55]. This is 
depicted in Figure 6. 

 
Figure 6: Worst-case analysis. 

4.5 Computational complexity of Dynamic 
programming (analyzing line of codes):  

For running time analyses, we have utilized the built-
in functions of Python. The code is given below: 
 
Import default_timer as timer  
def knapsack_dynamic(diamonds, 
capacity): 
The Time and Space Complexity takes 
O(1) in these two statements. 
    n = len(diamonds) 
    table = [[0.0] * (int(capacity) + 
1) for _ in range(n + 1)] 
This initializes a 2D table (table) 
with dimensions (n + 1) x (capacity + 
1). 
The Time and Space Complexity takes 
O(n*capacity). 
for i in range(1, n + 1): 
    for w in range(int(capacity) + 1): 
The outer loop runs n times. The inner 
loop runs int(capacity) + one time. 
The Time Complexity takes O(n*capacity) 
and the Space Complexity O(1) 
        weight, price = diamonds[i - 1] 
        if weight <= capacity: 
           table[i][w] = max(table[i - 
1][w], price + table[i - 1][int(w - 
weight)]) 
        else: 
          table[i][w] = table[i - 1][w] 
Each line's time and space complexity 
inside the loop is constant (1). This 
loop iterates through 'n' components 
and has an inner loop of 'capacity' 
iterations; as a result, its overall 
complexity is O(n * capacity) in time 
and O(n * capacity) in space. 
total_value = table[n][int(capacity)] 
# Backtrack to find selected items 
knapsack = [] 
total_weight = 0.0  # Initialize total 
weight 
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w = int(capacity) 
The Time and Space Complexity takes 
O(1).  
for i in range(n, 0, -1): 
    if table[i][w] != table[i - 1][w]: 
        if total_weight + diamonds[i - 
1][0] > int(capacity): 
            break  # Stop if adding the 
current item exceeds the capacity 
       knapsack.append(diamonds[i - 1]) 
     total_weight += diamonds[i - 1][0] 
        w = int(w - diamonds[i - 1][0])  
# Update the weight correctly 
Time Complexity: O(n) iterates through 
'n' elements. 
Space Complexity: O(1) - Constant space 
for the loop variables. 
return total_value, knapsack 
The Time and Space Complexity takes 
O(1).  
filename = "Diamonds.txt" 
diamonds = [] 
with open(filename, "r") as file: 
    for line in file: 
        weight, price = map(float, 
line.split()) 
       diamonds.append((weight, price)) 
Time Complexity: O(n) - It iterates 
through the 'n' lines in the file. 
Space Complexity: O(n) - It stores 'n' 
tuples in the 'diamonds' list. 
knapsack_capacity = float(input("Please 
enter the allowed weight for your 
shipment: "))  # Set the knapsack 
capacity 
The Time and Space Complexity takes 
O(1).  
start_time = timer() 
max_value, selected_diamonds = 
knapsack_dynamic(diamonds, 
knapsack_capacity) 
end_time = timer() 
Time Complexity: O(n * capacity) - It 
calls the 'knapsack_dynamic' function. 
Space Complexity: O(n * capacity) - It 
depends on the space complexity of the 
'knapsack_dynamic' function. 
print(f"Maximum Value: ${max_value}") 
print("Selected Diamonds:") 
for weight, price in selected_diamonds: 
    print(f"Weight: {weight}, Price: 
${price}") 
Time Complexity: O(n) - It iterates 
through 'n' elements in 
'selected_diamonds.' 

Space Complexity: O(1) - Constant space 
for printing. 
total_weight = sum(weight for weight, _ 
in selected_diamonds) 
print("Total Weight of Selected 
Diamonds:", total_weight) 
Time Complexity: O(n) - It iterates 
through 'n' elements in 
'selected_diamonds' by the sum 
operation. 
Space Complexity: O(1) - Constant space 
for the 'total_weight' variable. 
running_time = (end_time - 
start_time)*1000 
print(f"Running Time: {running_time} 
milliseconds") 
Time and Space Complexity takes O(1).  

 
4.6. Time complexity T(n) & Order of growth 
for dynamic programming  
 

After doing the code analysis, we have concluded 
that the overall time complexity T(n) and order of 
growth is O(n×capacity). Depending on the 
knapsack's capacity, the order of growth regarding the 
dataset size is linear in n. Considering n, the time 
complexity is linear if the capacity is constant. 
Nevertheless, the time complexity is O(n×capacity) if 
the capacity is variable and can increase with the 
collection amount. Figure 7 shows the order of growth for 
Dynamic programming. 

 
Figure 7: Order of growth For Dynamic programming 

 

4.8 Comparison between dynamic 
programming and genetic algorithm  
 

This section compares dynamic programming 
and genetic algorithms for solving the knapsack 
problem. Table 1 provides a comparison. 
 
 

Running Time 
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5. Brute Force Algorithm 
 

The second algorithm that solves a Knapsack 
problem is the brute force algorithm. Which will find 
the best combinations by trying all the inputs; it will 
accept the combination if it produces a total weight for 
the shipment less than or equal to the shipment 
capacity. Note that the 0/1 knapsack algorithm takes 
or rejects the whole item; no fractions are allowed! [56] 
For the data collected, we used a Diamond dataset 
from the Kaggle website and Python programming 
language for coding. 
Table 1: Comparison between Dynamic Programming 
and Genetic Algorithms 

 
 
 

5.1 Time complexity T(n) & Order of growth 
For Brute Force Algorithm 
 

The time complexity is exponential (2^n), where 
n is the size of the dataset. In the case of brute force, it 
generates all the possible solutions. The order of 
growth is also exponential because we have nested 
loops that iterate through all the combinations of 
diamonds. In the inner loop, we create the 
combinations using itertools.combinations.  
In the outer loop, it iterates several times, equal to the 
number of diamonds; that is why it is exponential in 
nature. Its behavior is depicted in Figure 8 where it 
shoots up even with fewer iterations on x-axis. 

Running time  

Figure 8: Growth rate of Brute Force algorithm 
 
 
5.2 Comparison between brute force and 
branch-and-bound. 
 
Table 2 presents a comparison between brute force 
and branch-and-bound.  
 

Table 2: Brute force and Branch & bound 
comparison 

Comparison 
Feature 

Dynamic 
programming 

Genetic Algorithm 

 

Approaches 

 

Constructs a table 
with each cell 
representing the 
maximum value that 
can be reached with 
a specific weight 
and a subset of the 
items. The value of 
including or 
removing each item 
for each weight is 
then compared to 
fill the table [57]. 

It solves the 0/1 
knapsack problem. 
Using selection, 
crossover, and 
mutation, GA 
generates a broad 
range of viable 
solutions that 
gradually focus on the 
best option. 
Its performance 
depends on parameter 
settings like 
population size and 
mutation rate, which 
require fine-tuning for 
optimal results [58]. 

Time 
complexity 

O(N*W) O (n*population

size*generation size)( 

Space 
complexity 

 

O(N*W) O (n*population 
size*generation size) 

 

Efficiency 

Dynamic 
programming may be 
more efficient if the 
knapsack problem is 
small to medium-sized 
and an optimal 
solution is required. 

Genetic algorithms 
may perform better for 
more significant 

 instances or when an 
approximate solution is 
acceptable. 
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Table 3 compares Brute force and Dynamic 
Programming algorithms based on three cases. 
 

Table 3: Comparison between Dynamic Algorithm 
and Brute Force Cases 

 
Algorithm Dynamic programming Brute force 

Space 
complexity 

O(nW) O(n) 

Best O(nW) O(𝟐𝒏ሻ 
Worst O(nW) O(𝟐𝒏ሻ 

Average O(nW) O(𝟐𝒏ሻ 
Similarly, Table 4 compares dynamic programming 
and brute force regarding execution time. 
 
Table 4: Comparison between Dynamic Algorithm & 

Brute Force Algorithm based on T(n) 

 
After comparing, it was found that the dynamic 
programming works more efficiently in terms of time. 
This benefit is ascribed to its capacity to use 
overlapping subproblems and optimal substructure, 
which minimizes computation duplication. Dynamic 
programming is more scalable for more significant 
problem instances because it achieves a more 
favorable time complexity. Nevertheless, because 
subproblem solutions must be stored, it comes at the 
expense of more space complexity. Depending on the 
nature of the task and the resources at hand, one can 
choose between these approaches; in general, dynamic 
programming provides a more effective solution. 

 
 

6. Conclusion  
 
To sum up, to identify which approach would result 
in the most workable and effective solution for the 
problem, we investigated the Knapsack Problem. We 
carefully examined and compared four different 
methods for solving it: dynamic programming, 
genetic algorithm, brute force, and Branch and bound 
methods. Dynamic programming is widely known for 
its remarkable effectiveness in breaking down 
complicated problems into smaller subproblems that 
may be solved. Because of its significantly lower 
space and time-based complexity than the other 
methods, we found that it is the optimal solution for 
more complex versions of the Knapsack problem. On 
the other hand, although the Brute Force Method 
ensured the best possible solution, its exponential 

temporal complexity caused inherent problems. 
Because of its exhaustive search method for issue 
solving, it ensured correctness while being impractical 
for larger datasets due to its comprehensive study of 
every possible combination. As far as the genetic 
algorithm is concerned, it is best suited to situations 
where the search space is considerably large and the 
solution is to be found heuristically. In the future, we 
intend to investigate non-deterministic polynomial 
(NP) and NP-hard problems using more heuristic-
based and hybrid algorithms [61-65]. 
 
 

Comparison 
Feature 

Brute Force 
Algorithm 

Branch and bound  

Approaches
 

The Brute force 
algorithm explores all 
possible solutions and 
finds the best solution. 

In the 0/1 knapsack 
problem, the brute 

force algorithm tries to 
find the maximum 
value with a weight 

less than or equal to the 
bag size [59]. 

An effective way to solve 
the 0/1 knapsack problem 

is to pay attention to 
unhelpful solutions. For 

example, we can ignore a 
node and its subtrees if 
the best in the subtree is 
worse than the current 
best. Therefore, before 

exploring a node, we first 
calculate each node's 

bound (best solution) and 
compare it with the 

current best solution [60].
Time 

complexity
O(2^n) 

 
O(2^n) 

Space 
complexity

O(n) 
 

O(2^n) 

Efficiency Less efficient. More efficient. 

# Input 
size 

Dynamic Programming 
O(N.W)  

Brute Force Algorithm 
𝑶ሺ𝟐𝒏ሻ 

1.   
 
 
 
 

10 

0.09883599999982451 ms 5.465989000000171 ms 
2.  0.09731500000009774 ms 7.157218000000021 ms 
3.  0.07336699999993535 ms 6.826498999999986 ms 
4.  0.10491800000000939 ms 6.023648999999964 ms 
5.  0.09617500000014267 ms 5.998559999999986 ms 
6.  0.07488699999991244 ms 5.162638999999913 ms 
7.  0.10149600000008974 ms 5.239427999999879 ms 
8.  0.07526699999993447 ms 4.965348000000036 ms 
9.  0.07146499999999278 ms 4.902626000000021 ms 
10.  0.06766400000002282 ms 5.513886000000134 ms 
Average 
running time 

0.0961308 ms 5.725544 ms 

1.   
 
 
 
 

20 

0.11632199999977999 ms 7420.097306999999 ms 
2.  0.1672600000000024 ms 7249.251606000001 ms 
3.  0.11670199999991304 ms 7485.677390999999 ms 
4.  0.11404100000000916 ms 7225.299178 ms 
5.  0.1075790000000243 ms 7720.121142 ms 
6.  0.18550699999986264 ms 7356.522067000001 ms 
7.  0.11860299999999491 ms 7454.425952999999 ms 
8.  0.1170820000000461 ms 7851.035739999999 ms 
9.  0.14635299999987694 ms 7045.72249 ms 
10.  0.1174619999999571 ms 7767.069193000001 ms 
Average 
running time 

0.1207911 ms 7377.522107 ms 
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