
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.2, February 2024

15

Manuscript received February 5, 2024
Manuscript revised February 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.2.2

Exploring Efficient Solutions for the 0/1 Knapsack Problem

Dalal M. Althawadi1, Sara Aldossary1, Aryam Alnemari1, Malak Alghamdi1, Fatema Alqahtani1,

Atta-ur Rahman2,*, Aghiad Bakry2 and Sghaier Chabani1

1Department of Networks and Communication, College of Computer Science and Information Technology, Imam
Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

2Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin
Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

*Correspondence: aaurahman@iau.edu.sa

Abstract
One of the most significant issues in combinatorial optimization is
the classical NP-complete conundrum known as the 0/1 Knapsack
Problem. This study delves deeply into the investigation of
practical solutions, emphasizing two classic algorithmic
paradigms, brute force, and dynamic programming, along with the
metaheuristic and nature-inspired family algorithm known as the
Genetic Algorithm (GA). The research begins with a thorough
analysis of the dynamic programming technique, utilizing its
ability to handle overlapping subproblems and an ideal
substructure. We evaluate the benefits of dynamic programming
in the context of the 0/1 Knapsack Problem by carefully dissecting
its nuances in contrast to GA. Simultaneously, the study examines
the brute force algorithm, a simple yet comprehensive method
compared to Branch & Bound. This strategy entails investigating
every potential combination, offering a starting point for
comparison with more advanced techniques. The paper explores
the computational complexity of the brute force approach,
highlighting its limitations and usefulness in resolving the 0/1
Knapsack Problem in contrast to the set above of algorithms.

Keywords:
Dynamic programming, Genetic Algorithms, Brute force, Branch
and Bound algorithm, knapsack problem, efficiency

1. Introduction

Despite rigorous advancement in software and
hardware resources, the design and analysis of
algorithms to find the most efficient one has always
been the hottest area of research in optimization. The
0/1 The knapsack problem is a classic optimization
problem in computer science, engineering, and
combinatorial optimization, with considerable
importance in various fields, including operations
research, algorithm design, and theoretical computing.
This problem can be briefly expressed as follows:
given a finite set of items, each of which has a certain
weight and value, determine the optimal selection of
items to include in a backpack of limited capacity such

that the total weight does not exceed the capacity and
the total value is maximized [1]. It is a constrained
optimization problem that mimics several real-life
problems, such as revenue enhancement under a fixed
deposit, and hence needs to be solved effectively.

In real life, when we want to solve a problem, we
make a set of steps to solve this problem. Also, there
are many problems in the technology world, one of
them being power consumption. Some devices have a
high power consumption, generating more heat.
Therefore, companies and enterprises seek to lower
the power consumed by their devices, and one of the
essential ways is choosing a suitable scheduling
algorithm. The software will be implemented to
provide different scheduling algorithms to analyze
which one is the best [2-3]. This means the CPU will
work more efficiently and generate less heat, ensuring
a potentially sustainable and renewable solution. This
study aims to ensure that these algorithms provide
correct results with due efficiency [4]. We are going
to use Python programming language in this regard.
This paper is organized as follows. The next section
describes the methodology we followed in this study.
Section 3 discusses the companies’ survey results. In
section 4, we discuss the results of the students’ survey.
Section 5 summarizes the results and gives some
recommendations. Finally, in section 6, we give some
concluding remarks.

2. Background

Algorithms have become a crucial component of

every subject. From the very beginning, a good
algorithm ensures great simplifying of things and aids
in problem-solving. Sort algorithms are a crucial
component of computer science because they offer an
organized method of managing and organizing data,

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.2, February 2024

16

from refining data processing to looking for certain
things in a dataset. Merger algorithms are an example
of a sorting algorithm, a "divide and conquer" method
that splits the input in half recursively, sorts each half
separately, and then combines the sorted halves to get
the final sorted output [5]. Moreover, the counting
algorithm is a non-comparison-based sorting method
that performs well when the input value range is
constrained by the counting sort [6].

An algorithm is the most crucial element while
executing the processes to make sure that the CPU is
working at peak speed without degrading its
performance with the possible lowest temperature of
the CPU; this means the efficiency, response time, and
throughput are maximized. There are two types of
scheduling algorithms used, the first type of
scheduling algorithm is called preemptive, and in this
type of scheduling, the processes will be interrupted
based on several parameters, such as the arrival time
of the process, the priority of the process, and how
long the process will be executed which is called burst
time. The second type of scheduling algorithm is non-
preemptive, and in this type of scheduling algorithm,
the processes will not be interrupted even if their
parameters are different [7]. Knapsack is an
optimization algorithm used to solve real-life
problems involving constraints. They have two
variants, namely, continuous, fractional knapsack, and
discrete knapsack. The fractional knapsack is an
algorithm that allows the fractional values to fill the
capacity. In the case of a discrete knapsack, either
element is included or excluded, and no partial values
are possible [8-10]. In this research, we will use
dynamic programming to solve the knapsack problem
to get the maximum profit from diamonds with the
appropriate weight of the shipment [8].

3. Methodology

We started by choosing a real-life problem related

to customs laws. The problem was deciding the
optimal shipment of diamonds based on the capacity
of the knapsack the user would provide.

3.1: Dynamic Programming

Our objective is to evaluate and compare the
effectiveness of the brute force and the dynamic
programming approaches in resolving the Knapsack
problem for optimizing diamond shipment. We
collected the dataset from Kaggle, which contains

information about the weight and price of diamonds.
After that, we selected dynamic programming due to
its optimal sub-structure, which is a pre-requisite, and
brute force programming because it exhaustively
checks all possible combinations and guarantees
correctness. We implemented both algorithms using
Python programming language. We measured the
execution time in three cases, best case, average case,
and worst case, for each dynamic and brute force
algorithm. We also analyzed each line in both codes to
find the total time and space complexity. In addition,
we measured the order of growth for each of them. The
results were the time and space complexity for the
dynamic programming, respectively, O(n×capacity)
and O(n×capacity). From the literature, it is found that
the time and space complexity for the brute force
respectively O(2^n) and O(n) [9].

Furthermore, we also compared dynamic
programming and Genetic Algorithms to solve the 0/1
knapsack problem in terms of space and time
complexity. We found that if the knapsack problem is
small to medium-sized and an optimal solution is
required, dynamic programming may be more
efficient; for larger instances, genetic programming
will be better. We made another comparison between
brute force and Branch and bound to solve the 0/1
knapsack problem in terms of space and time
complexity. Branch and bound are more efficient than
the Brute Force algorithm. To sum up, the space
complexity, best, average, and worst cases for
dynamic programming are all O(n×capacity); for brute
force, the time complexity is O(n), and the rest of the
cases are O(2^n). Furthermore, dynamic programming
is more efficient for small to medium-sized instances
than genetic programming. Moreover, brute force is
less efficient than Branch and bound. As a result,
dynamic programming is more efficient in finding the
optimal solution for the diamond shipment [10].

3.2: Genetic Algorithms
The genetic algorithm (or GA) belongs to nature-
inspired, meta-heuristic, and evolutionary algorithms.
It is a search method used in computing to find
accurate or approximate solutions to optimization and
search problems. It is beneficial when the search space
is ample and the solution is approximal, like minimal
or maximal. Genetic algorithms are considered to be
universal search heuristic-based approximators [11-
15]. GA is a particular class of evolutionary
algorithms that use techniques inspired by

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.2, February 2024

17

evolutionary biology, such as inheritance, mutation,
selection, and crossover (also called recombination)
[16-20]. GA is employed as a computer simulation in
which an inhabitant of intangible representations
(known as chromosomes or the genotype or the
genome) of candidate solutions (called individuals,
creatures, or phenotypes) to an optimization problem
progresses about improved results. Conventionally,
results are exemplified in binary as strings of 0s and
1s, but other presentations are also possible. GA's
counterpart, the Differential Evolution algorithm, is
utilized for the same purpose, especially for non-
binary and continuous spaces [25-30]. Figure 1 shows
the GA working flowchart. It starts with an initial
population, usually generated randomly around an
essential seed value, then fitness is evaluated, and
condition to criterion is checked. If failed, the top
chromosome is selected, and crossover is performed
among them based on some techniques. After that, the
mutation operator is applied, and this is how a new
generation is generated. The process continues until
results are found [31-45].

Figure 1: GA flowchart

4. Dynamic programming

As we will see, the 0-1 knapsack problem has
both the optimal substructure and overlapping sub-
problems needed for dynamic programming. In this 0–
1 knapsack problem, we can either include or exclude
a diamond from the shipment, but we cannot include
it entirely or more than once. It uses a 2D table to store
and reuse intermediate solutions, utilizing optimal
substructure and overlapping subproblems to achieve
efficiency through memoization. The retracing stage

identifies specific components that contribute to the
best solution. We used Python to solve this problem
and analyze the time and space complexities.

4.1 Implementation

Figures 2 and 3 show the implementation of
dynamic programming in Python. The program takes
the knapsack's capacity, a dynamic array of items, and
their weight and values, respectively. Then, based on
dynamic programming principles, the items are
selected optimally to fill the knapsack capacity to
maximize revenue [46-50]. Moreover, in this regard,
several experiments have been conducted to find the
optimal value with various instances of the dataset,
and several analyses have been made, as described in
the subsequent sections of the article.

Figure 2: Dynamic programming implementation 1.

Figure 3: Dynamic programming implementation 2.

4.2 Best Case Scenario
A dedicated dataset is provided to the algorithm

to observe the algorithm in terms of its best case. With
that dataset, the algorithm is supposed to taper off with
the minimum amount of time ideally. Here, we have a
sample of the best case when we have a small dataset
size (100 diamonds), and the weights and values are

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.2, February 2024

18

not large, it will have the lowest running time,
measured in milliseconds, as shown in Figure 4.

Figure 4: Best case analysis.

4.3 Average case scenario
In the average case analysis, the idea is to provide

a dataset where the algorithm reaches the final
solution with an average amount of time. Here, we
have a sample of the average case. When we have a
bigger dataset size (250 diamonds) and some large
weights and values, it will take more running time than
the best case. It is shown in Figure 5.

Figure 5: Average case analysis.

4.4 Worst case scenario
In the worst-case analysis, the idea is to provide

a dataset where the algorithm reaches the final
solution in the shortest time. Here, we have a sample
of the worst case, which has a much bigger dataset size
(500 diamonds) and large weight and values; it will
have the longest running time. In practice, an
algorithm is selected based on its worst-case running
time. That algorithm performs well in the worst-case
scenario and is considered the best [51-55]. This is
depicted in Figure 6.

Figure 6: Worst-case analysis.

4.5 Computational complexity of Dynamic
programming (analyzing line of codes):

For running time analyses, we have utilized the built-
in functions of Python. The code is given below:

Import default_timer as timer
def knapsack_dynamic(diamonds,
capacity):
The Time and Space Complexity takes
O(1) in these two statements.
 n = len(diamonds)
 table = [[0.0] * (int(capacity) +
1) for _ in range(n + 1)]
This initializes a 2D table (table)
with dimensions (n + 1) x (capacity +
1).
The Time and Space Complexity takes
O(n*capacity).
for i in range(1, n + 1):
 for w in range(int(capacity) + 1):
The outer loop runs n times. The inner
loop runs int(capacity) + one time.
The Time Complexity takes O(n*capacity)
and the Space Complexity O(1)
 weight, price = diamonds[i - 1]
 if weight <= capacity:
 table[i][w] = max(table[i -
1][w], price + table[i - 1][int(w -
weight)])
 else:
 table[i][w] = table[i - 1][w]
Each line's time and space complexity
inside the loop is constant (1). This
loop iterates through 'n' components
and has an inner loop of 'capacity'
iterations; as a result, its overall
complexity is O(n * capacity) in time
and O(n * capacity) in space.
total_value = table[n][int(capacity)]
Backtrack to find selected items
knapsack = []
total_weight = 0.0 # Initialize total
weight

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.2, February 2024

19

w = int(capacity)
The Time and Space Complexity takes
O(1).
for i in range(n, 0, -1):
 if table[i][w] != table[i - 1][w]:
 if total_weight + diamonds[i -
1][0] > int(capacity):
 break # Stop if adding the
current item exceeds the capacity
 knapsack.append(diamonds[i - 1])
 total_weight += diamonds[i - 1][0]
 w = int(w - diamonds[i - 1][0])
Update the weight correctly
Time Complexity: O(n) iterates through
'n' elements.
Space Complexity: O(1) - Constant space
for the loop variables.
return total_value, knapsack
The Time and Space Complexity takes
O(1).
filename = "Diamonds.txt"
diamonds = []
with open(filename, "r") as file:
 for line in file:
 weight, price = map(float,
line.split())
 diamonds.append((weight, price))
Time Complexity: O(n) - It iterates
through the 'n' lines in the file.
Space Complexity: O(n) - It stores 'n'
tuples in the 'diamonds' list.
knapsack_capacity = float(input("Please
enter the allowed weight for your
shipment: ")) # Set the knapsack
capacity
The Time and Space Complexity takes
O(1).
start_time = timer()
max_value, selected_diamonds =
knapsack_dynamic(diamonds,
knapsack_capacity)
end_time = timer()
Time Complexity: O(n * capacity) - It
calls the 'knapsack_dynamic' function.
Space Complexity: O(n * capacity) - It
depends on the space complexity of the
'knapsack_dynamic' function.
print(f"Maximum Value: ${max_value}")
print("Selected Diamonds:")
for weight, price in selected_diamonds:
 print(f"Weight: {weight}, Price:
${price}")
Time Complexity: O(n) - It iterates
through 'n' elements in
'selected_diamonds.'

Space Complexity: O(1) - Constant space
for printing.
total_weight = sum(weight for weight, _
in selected_diamonds)
print("Total Weight of Selected
Diamonds:", total_weight)
Time Complexity: O(n) - It iterates
through 'n' elements in
'selected_diamonds' by the sum
operation.
Space Complexity: O(1) - Constant space
for the 'total_weight' variable.
running_time = (end_time -
start_time)*1000
print(f"Running Time: {running_time}
milliseconds")
Time and Space Complexity takes O(1).

4.6. Time complexity T(n) & Order of growth
for dynamic programming

After doing the code analysis, we have concluded
that the overall time complexity T(n) and order of
growth is O(n×capacity). Depending on the
knapsack's capacity, the order of growth regarding the
dataset size is linear in n. Considering n, the time
complexity is linear if the capacity is constant.
Nevertheless, the time complexity is O(n×capacity) if
the capacity is variable and can increase with the
collection amount. Figure 7 shows the order of growth for
Dynamic programming.

Figure 7: Order of growth For Dynamic programming

4.8 Comparison between dynamic
programming and genetic algorithm

This section compares dynamic programming
and genetic algorithms for solving the knapsack
problem. Table 1 provides a comparison.

Running Time

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.2, February 2024

20

5. Brute Force Algorithm

The second algorithm that solves a Knapsack
problem is the brute force algorithm. Which will find
the best combinations by trying all the inputs; it will
accept the combination if it produces a total weight for
the shipment less than or equal to the shipment
capacity. Note that the 0/1 knapsack algorithm takes
or rejects the whole item; no fractions are allowed! [56]
For the data collected, we used a Diamond dataset
from the Kaggle website and Python programming
language for coding.
Table 1: Comparison between Dynamic Programming
and Genetic Algorithms

5.1 Time complexity T(n) & Order of growth
For Brute Force Algorithm

The time complexity is exponential (2^n), where
n is the size of the dataset. In the case of brute force, it
generates all the possible solutions. The order of
growth is also exponential because we have nested
loops that iterate through all the combinations of
diamonds. In the inner loop, we create the
combinations using itertools.combinations.
In the outer loop, it iterates several times, equal to the
number of diamonds; that is why it is exponential in
nature. Its behavior is depicted in Figure 8 where it
shoots up even with fewer iterations on x-axis.

Running time

Figure 8: Growth rate of Brute Force algorithm

5.2 Comparison between brute force and
branch-and-bound.

Table 2 presents a comparison between brute force
and branch-and-bound.

Table 2: Brute force and Branch & bound
comparison

Comparison
Feature

Dynamic
programming

Genetic Algorithm

Approaches

Constructs a table
with each cell
representing the
maximum value that
can be reached with
a specific weight
and a subset of the
items. The value of
including or
removing each item
for each weight is
then compared to
fill the table [57].

It solves the 0/1
knapsack problem.
Using selection,
crossover, and
mutation, GA
generates a broad
range of viable
solutions that
gradually focus on the
best option.
Its performance
depends on parameter
settings like
population size and
mutation rate, which
require fine-tuning for
optimal results [58].

Time
complexity

O(N*W) O (n*population

size*generation size)(

Space
complexity

O(N*W) O (n*population
size*generation size)

Efficiency

Dynamic
programming may be
more efficient if the
knapsack problem is
small to medium-sized
and an optimal
solution is required.

Genetic algorithms
may perform better for
more significant

 instances or when an
approximate solution is
acceptable.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.2, February 2024

21

Table 3 compares Brute force and Dynamic
Programming algorithms based on three cases.

Table 3: Comparison between Dynamic Algorithm
and Brute Force Cases

Algorithm Dynamic programming Brute force

Space
complexity

O(nW) O(n)

Best O(nW) O(𝟐𝒏ሻ
Worst O(nW) O(𝟐𝒏ሻ

Average O(nW) O(𝟐𝒏ሻ
Similarly, Table 4 compares dynamic programming
and brute force regarding execution time.

Table 4: Comparison between Dynamic Algorithm &

Brute Force Algorithm based on T(n)

After comparing, it was found that the dynamic
programming works more efficiently in terms of time.
This benefit is ascribed to its capacity to use
overlapping subproblems and optimal substructure,
which minimizes computation duplication. Dynamic
programming is more scalable for more significant
problem instances because it achieves a more
favorable time complexity. Nevertheless, because
subproblem solutions must be stored, it comes at the
expense of more space complexity. Depending on the
nature of the task and the resources at hand, one can
choose between these approaches; in general, dynamic
programming provides a more effective solution.

6. Conclusion

To sum up, to identify which approach would result
in the most workable and effective solution for the
problem, we investigated the Knapsack Problem. We
carefully examined and compared four different
methods for solving it: dynamic programming,
genetic algorithm, brute force, and Branch and bound
methods. Dynamic programming is widely known for
its remarkable effectiveness in breaking down
complicated problems into smaller subproblems that
may be solved. Because of its significantly lower
space and time-based complexity than the other
methods, we found that it is the optimal solution for
more complex versions of the Knapsack problem. On
the other hand, although the Brute Force Method
ensured the best possible solution, its exponential

temporal complexity caused inherent problems.
Because of its exhaustive search method for issue
solving, it ensured correctness while being impractical
for larger datasets due to its comprehensive study of
every possible combination. As far as the genetic
algorithm is concerned, it is best suited to situations
where the search space is considerably large and the
solution is to be found heuristically. In the future, we
intend to investigate non-deterministic polynomial
(NP) and NP-hard problems using more heuristic-
based and hybrid algorithms [61-65].

Comparison
Feature

Brute Force
Algorithm

Branch and bound

Approaches

The Brute force
algorithm explores all
possible solutions and
finds the best solution.

In the 0/1 knapsack
problem, the brute

force algorithm tries to
find the maximum
value with a weight

less than or equal to the
bag size [59].

An effective way to solve
the 0/1 knapsack problem

is to pay attention to
unhelpful solutions. For

example, we can ignore a
node and its subtrees if
the best in the subtree is
worse than the current
best. Therefore, before

exploring a node, we first
calculate each node's

bound (best solution) and
compare it with the

current best solution [60].
Time

complexity
O(2^n)

O(2^n)

Space
complexity

O(n)

O(2^n)

Efficiency Less efficient. More efficient.

Input
size

Dynamic Programming
O(N.W)

Brute Force Algorithm
𝑶ሺ𝟐𝒏ሻ

1.

10

0.09883599999982451 ms 5.465989000000171 ms
2. 0.09731500000009774 ms 7.157218000000021 ms
3. 0.07336699999993535 ms 6.826498999999986 ms
4. 0.10491800000000939 ms 6.023648999999964 ms
5. 0.09617500000014267 ms 5.998559999999986 ms
6. 0.07488699999991244 ms 5.162638999999913 ms
7. 0.10149600000008974 ms 5.239427999999879 ms
8. 0.07526699999993447 ms 4.965348000000036 ms
9. 0.07146499999999278 ms 4.902626000000021 ms
10. 0.06766400000002282 ms 5.513886000000134 ms
Average
running time

0.0961308 ms 5.725544 ms

1.

20

0.11632199999977999 ms 7420.097306999999 ms
2. 0.1672600000000024 ms 7249.251606000001 ms
3. 0.11670199999991304 ms 7485.677390999999 ms
4. 0.11404100000000916 ms 7225.299178 ms
5. 0.1075790000000243 ms 7720.121142 ms
6. 0.18550699999986264 ms 7356.522067000001 ms
7. 0.11860299999999491 ms 7454.425952999999 ms
8. 0.1170820000000461 ms 7851.035739999999 ms
9. 0.14635299999987694 ms 7045.72249 ms
10. 0.1174619999999571 ms 7767.069193000001 ms
Average
running time

0.1207911 ms 7377.522107 ms

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.2, February 2024

22

References

[1]. Terh, F. (2019). How to solve the Knapsack problem with

dynamic programming. Retrieved from
https://medium.com/@fabianterh/how-to-solve-the-
knapsack-problem-with-dynamic-programming-
eb88c706d3cf

[2]. Al-Fareed, H., Alghamdi, O., Alshuraya, A., Alqahtani, M.,
Alwasfer, S., Aljomea, A., Rahman, A., Aljameel, S.,
Krishnasamy, G. (2022). Simulator for scheduling real-time
systems with reduced power consumption. Mathematical
Modelling of Engineering Problems, Vol. 9, No. 5, pp.
1225-1232.

[3]. W. Hantom, A. Aldweesh, R. Alzaher, A. Rahman, “A
Survey on Scheduling Algorithms in Real-Time Systems,”
IJCSNS - International Journal of Computer Science and
Network Security 22(4), 686-690, 2022.

[4]. N. AlDossary, S. AlQahtani, H. AlUbaidan, A. Rahman, “A
Survey on Resource Allocation Algorithms and Models in
Cloud Computing,” IJCSNS International Journal of
Computer Science and Network Security 22 (3), 776-782,
2022.

[5]. A. Obregon, “Introduction to sorting algorithms in java: A
beginner’s guide,” Medium,
https://medium.com/@AlexanderObregon/introduction-to-
sorting-algorithms-in-java-abeginners-guide-db522047effb
(accessed Nov. 30, 2023).

[6]. “Counting sort - data structures and algorithms tutorials,”
GeeksforGeeks, https://www.geeksforgeeks.org/counting-
sort/ (accessed Nov. 30, 2023).

[7]. I. Qureshi, "CPU Scheduling Algorithms: A Survey," Int. J.
Advanced Networking and Applications, vol. 5, no. 4, pp.
1968-2973, 2014.

[8]. I. Alrashide, H. Alkhalifah, A.A. Al-Momen, I. Alali, G.
Alshaikh et al., "AIMS: AI based Mental Healthcare
System," IJCSNS - International Journal of Computer
Science and Network Security 23(12), 225-234, 2023.

[9]. A. Alhashem, A. Abdulbaset, F. Almudarra, H. Alshareef,
M. Alqasoumi et al., “Diabetes Detection and Forecasting
using Machine Learning Approaches: Current State-of-the-
art,” IJCSNS - International Journal of Computer Science
and Network Security 23(10), 199-208, 2023.

[10]. A. Albassam, F. Almutairi, N. Majoun, R. Althukair, Z.
Alturaiki et al., “Integration of Blockchain and Cloud
Computing in Telemedicine and Healthcare,” IJCSNS -
International Journal of Computer Science and Network
Security 23(6), 17-26, 2023.

[11]. M Mahmud, A Rahman, M Lee, JY Choi, “Evolutionary-
based image encryption using RNA codons truth table,”
Optics & Laser Technology 121, 105818, 2020.

[12]. Atta-ur-Rahman, Dash, S., Luhach, A.K. et al. A Neuro-
fuzzy approach for user behaviour classification and

prediction. J Cloud Comp 8, 17 (2019).
https://doi.org/10.1186/s13677-019-0144-9.

[13]. Atta-ur-Rahman, Sultan, K., Aldhafferi, N., Alqahtani, A.
(2018). Differential Evolution Assisted MUD for MC-
CDMA Systems Using Non-Orthogonal Spreading Codes.
In: Abraham, A., Haqiq, A., Muda, A., Gandhi, N. (eds)
Innovations in Bio-Inspired Computing and Applications.
IBICA 2017. Advances in Intelligent Systems and
Computing, vol 735. Springer, Cham.

[14]. A Rahman, M Mahmud, K Sultan, N Aldhafferi, A
Alqahtani, D Musleh, “Medical Image Watermarking for
Fragility and Robustness: A Chaos, ECC and RRNS Based
Approach,” Journal of Medical Imaging and Health
Informatics 8 (6), 1192-1200, 2018.

[15]. A Rahman, IM Qureshi, AN Malik, MT Naseem, “Dynamic
resource allocation in OFDM systems using DE and FRBS,”
Journal of Intelligent and Fuzzy Systems 26 (4), 2035-2046,
2014.

[16]. Atta-ur-Rahman, D. -e. -N. Zaidi, M. H. Salam and S. Jamil,
"User behaviour classification using Fuzzy Rule Based
System," 13th International Conference on Hybrid
Intelligent Systems (HIS 2013), Gammarth, Tunisia, 2013,
pp. 117-122.

[17]. Atta-Ur-Rahman, I. M. Qureshi, M. H. Salam and M. Z.
Muzaffar, "Adaptive communication using softcomputing
techniques," 2013 International Conference on Soft
Computing and Pattern Recognition (SoCPaR), Hanoi,
Vietnam, 2013, pp. 19-24, doi:
10.1109/SOCPAR.2013.7054131.

[18]. Atta-ur-Rahman, M. H. Salam, M. T. Naseem and M. Z.
Muzaffar, "An intelligent link adaptation scheme for OFDM
based Hyperlans," 2013 International Conference on Soft
Computing and Pattern Recognition (SoCPaR), Hanoi,
Vietnam, 2013, pp. 360-365, doi:
10.1109/SOCPAR.2013.7054159.

[19]. Atta-ur-Rahman, I. M. Qureshi, M. H. Salam and M. T.
Naseem, "Efficient link adaptation in OFDM systems using
a hybrid intelligent technique," 13th International
Conference on Hybrid Intelligent Systems (HIS 2013),
Gammarth, Tunisia, 2013, pp. 12-17, doi:
10.1109/HIS.2013.6920471.

[20]. RA Qamar, M Sarfraz, A Rahman, SA Ghauri, “Multi-
Criterion Multi-UAV Task Allocation under Dynamic
Conditions,” Journal of King Saud University-Computer
and Information Sciences 35 (9), 101734, 2023.

[21]. Z Alsadeq, H Alubaidan, A Aldweesh, A Rahman, T Iqbal,
“A Proposed Model for Supply Chain using Blockchain
Framework,” IJCSNS - International Journal of Computer
Science and Network Security 23(6), 91-98, 2023.

[22]. S. Arooj, M. F. Khan, T. Shahzad, M. A. Khan, M. U. Nasir
et al., "Data fusion architecture empowered with deep
learning for breast cancer classification," Computers,
Materials & Continua, vol. 77, no.3, pp. 2813–2831, 2023.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.2, February 2024

23

[23]. Jan, F.; Rahman, A.; Busaleh, R.; Alwarthan, H.; Aljaser, S.;
Al-Towailib, S.; Alshammari, S.; Alhindi, K.R.; Almogbil,
A.; Bubshait, D.A.; et al. Assessing Acetabular Index Angle
in Infants: A Deep Learning-Based Novel Approach. J.
Imaging 2023, 9, 242.

[24]. M. M. Qureshi, F. B. Yunus, J. Li, A. Ur-Rahman, T.
Mahmood and Y. A. A. Ali, "Future Prospects and
Challenges of On-Demand Mobility Management
Solutions," in IEEE Access, vol. 11, pp. 114864-114879,
2023, doi: 10.1109/ACCESS.2023.3324297.

[25]. M. Gollapalli, A. -U. Rahman, A. Osama, A. Alfaify, M.
Yassin and A. Alabdullah, "Data Mining and Visualization
to Understand Employee Attrition and Work Performance,"
2023 3rd International Conference on Computing and
Information Technology (ICCIT), Tabuk, Saudi Arabia,
2023, pp. 149-154, doi:
10.1109/ICCIT58132.2023.10273889.

[26]. Musleh, D.A.; Olatunji, S.O.; Almajed, A.A.; Alghamdi,
A.S.; Alamoudi, B.K.; Almousa, F.S.; Aleid, R.A.;
Alamoudi, S.K.; Jan, F.; Al-Mofeez, K.A.; et al. Ensemble
Learning Based Sustainable Approach to Carbonate
Reservoirs Permeability Prediction. Sustainability 2023, 15,
14403.

[27]. Ahmed, M.I.B.; Saraireh, L.; Rahman, A.; Al-Qarawi, S.;
Mhran, A.; Al-Jalaoud, J.; Al-Mudaifer, D.; Al-Haidar, F.;
AlKhulaifi, D.; Youldash, M.; et al. Personal Protective
Equipment Detection: A Deep-Learning-Based Sustainable
Approach. Sustainability 2023, 15, 13990.

[28]. Ahmed, M.I.B.; Alabdulkarem, H.; Alomair, F.; Aldossary,
D.; Alahmari, M.; Alhumaidan, M.; Alrassan, S.; Rahman,
A.; Youldash, M.; Zaman, G. A Deep-Learning Approach
to Driver Drowsiness Detection. Safety 2023, 9, 65.

[29]. Ahmed, M.I.B.; Alotaibi, R.B.; Al-Qahtani, R.A.; Al-
Qahtani, R.S.; Al-Hetela, S.S.; Al-Matar, K.A.; Al-Saqer,
N.K.; Rahman, A.; Saraireh, L.; Youldash, M.; et al. Deep
Learning Approach to Recyclable Products Classification:
Towards Sustainable Waste Management. Sustainability
2023, 15, 11138.

[30]. Sajid, N.A.; Rahman, A.; Ahmad, M.; Musleh, D.; Basheer
Ahmed, M.I.; Alassaf, R.; Chabani, S.; Ahmed, M.S.; Salam,
A.A.; AlKhulaifi, D. Single vs. Multi-Label: The Issues,
Challenges and Insights of Contemporary Classification
Schemes. Appl. Sci. 2023, 13, 6804.

[31]. Gollapalli, M.; Rahman, A.; Alkharraa, M.; Saraireh, L.;
AlKhulaifi, D.; Salam, A.A.; Krishnasamy, G.; Alam Khan,
M.A.; Farooqui, M.; Mahmud, M.; et al. SUNFIT: A
Machine Learning-Based Sustainable University Field
Training Framework for Higher Education. Sustainability
2023, 15, 8057.

[32]. Talha, M.; Sarfraz, M.; Rahman, A.; Ghauri, S.A.;
Mohammad, R.M.; Krishnasamy, G.; Alkharraa, M. Voting-
Based Deep Convolutional Neural Networks (VB-DCNNs)

for M-QAM and M-PSK Signals Classification. Electronics
2023, 12, 1913.

[33]. T. A. Khan et al., "Secure IoMT for Disease Prediction
Empowered with Transfer Learning in Healthcare 5.0, the
Concept and Case Study," in IEEE Access, vol. 11, pp.
39418-39430, 2023, doi: 10.1109/ACCESS.2023.3266156.

[34]. Musleh, D.; Alotaibi, M.; Alhaidari, F.; Rahman, A.;
Mohammad, R.M. Intrusion Detection System Using
Feature Extraction with Machine Learning Algorithms in
IoT. J. Sens. Actuator Netw. 2023, 12, 29.
https://doi.org/10.3390/jsan12020029.

[35]. Alghamdi, A.S.; Rahman, A. Data Mining Approach to
Predict Success of Secondary School Students: A Saudi
Arabian Case Study. Educ. Sci. 2023, 13, 293.

[36]. MA Qureshi, M Asif, S Anwar, U Shaukat, MA Khan, A
Mosavi, “Aspect Level Songs Rating Based Upon Reviews
in English,” Computers, Materials & Continua 74 (2), 2589-
2605, 2023.

[37]. NA Sajid, M Ahmad, A Rahman, G Zaman, MS Ahmed, N
Ibrahim et al., “A Novel Metadata Based Multi-Label
Document Classification Technique,” Computer Systems
Science and Engineering 46 (2), 2195-2214, 2023.

[38]. Basheer Ahmed, M.I.; Zaghdoud, R.; Ahmed, M.S.; Sendi,
R.; Alsharif, S.; Alabdulkarim, J.; Albin Saad, B.A.; Alsabt,
R.; Rahman, A.; Krishnasamy, G. A Real-Time Computer
Vision Based Approach to Detection and Classification of
Traffic Incidents. Big Data Cogn. Comput. 2023, 7, 22.

[39]. Alqarni, A.; Rahman, A. Arabic Tweets-Based Sentiment
Analysis to Investigate the Impact of COVID-19 in KSA: A
Deep Learning Approach. Big Data Cogn. Comput. 2023, 7,
16.

[40]. S Abbas, SA Raza, MA Khan, A Rahman, K Sultan, A
Mosavi, “Automated File Labeling for Heterogeneous Files
Organization Using Machine Learning,” Computers,
Materials & Continua 74 (2), 3263-3278, 2023.

[41]. MS Farooq, S Abbas, A Rahman, K Sultan, MA Khan, A
Mosavi, “A Fused Machine Learning Approach for
Intrusion Detection System,” Computers, Materials &
Continua 74 (2), 2607–2623, 2023.

[42]. Alhaidari, F., Rahman, A. & Zagrouba, R. Cloud of Things:
architecture, applications and challenges. J Ambient Intell
Human Comput 14, 5957–5975 (2023).
https://doi.org/10.1007/s12652-020-02448-3.

[43]. Rahman, A. GRBF-NN based ambient aware realtime
adaptive communication in DVB-S2. J Ambient Intell
Human Comput 14, 5929–5939 (2023).

[44]. Ahmad, M., Qadir, M.A., Rahman, A. et al. Enhanced query
processing over semantic cache for cloud-based relational
databases. J Ambient Intell Human Comput 14, 5853–5871
(2023).

[45]. M Jamal, NA Zafar, D Musleh, MA Gollapalli, S Chabani,
“Modeling and Verification of Aircraft Takeoff Through

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.2, February 2024

24

Novel Quantum Nets,” Computers, Materials & Continua
72 (2), 3331-3348, 2022.

[46]. M.U. Nasir, T.M. Ghazal, M.A. Khan, M. Zubair, Atta-ur
Rahman, R. Ahmed, H. AlHamadi, C.Y.Yeun, "Breast
Cancer Prediction Empowered with Fine-Tuning",
Computational Intelligence and Neuroscience, vol. 2022,
Article ID 5918686, 2022.

[47]. A Rahman, M Ahmed, G Zaman, T Iqbal, MAA Khan et al.,
“Geo-Spatial Disease Clustering for Public Health Decision
Making,” Informatica 46 (6), 21-32, 2022.

[48]. Atta-ur-Rahman, Ibrahim, N.M., Musleh, D., Khan, M.A.A.,
Chabani, S., Dash, S. (2022). Cloud-Based Smart Grids:
Opportunities and Challenges. In: Dehuri, S., Prasad Mishra,
B.S., Mallick, P.K., Cho, SB. (eds) Biologically Inspired
Techniques in Many Criteria Decision Making. Smart
Innovation, Systems and Technologies, vol 271. Springer,
Singapore.

[49]. M.B.S Khan, Atta-ur-Rahman, M.S. Nawaz, R. Ahmed,
M.A. Khan, A. Mosavi. Intelligent breast cancer diagnostic
system empowered by deep extreme gradient descent
optimization[J]. Mathematical Biosciences and Engineering,
2022, 19(8): 7978-8002. doi: 10.3934/mbe.2022373.

[50]. F Al-Jawad, R Alessa, S Alhammad, B Ali, M Al-Qanbar,
A Rahman, “Applications of 5G and 6G in Smart Health
Services,” IJCSNS, 22 (3): 173-182, 2022.

[51]. A Rahman, K Sultan, I Naseer, R Majeed, D Musleh et al.,
“Supervised machine learning-based prediction of COVID-
19,” Computers, Materials and Continua 69 (1), 21-34, 2021.

[52]. R Zagrouba, A AlAbdullatif, K AlAjaji et al., “Authenblue:
A New Authentication Protocol for the Industrial Internet of
Things,” Computers, Materials & Continua 67 (1), 1103-
1119, 2021.

[53]. G Zaman, H Mahdin, K Hussain, A Rahman, et al., “Digital
Library of Online PDF Sources: An ETL Approach,”
IJCSNS 20 (11), 172-181, 2020.

[54]. A Rahman, “Memetic computing based numerical solution
to Troesch problem,” Journal of Intelligent and Fuzzy
Systems 36 (6), 1-10, 2019.

[55]. A Rahman, “Optimum information embedding in digital
watermarking,” Journal of Intelligent and Fuzzy Systems 37
(1), 553-564, 2019.

[56]. Pan, X. and Zhang, T. (2018) ‘Comparison and analysis of
algorithms for the 0/1 Knapsack problem’, Journal of
Physics: Conference Series, 1069, p. 012024.
doi:10.1088/1742-6596/1069/1/012024.

[57]. Algorithm Design, “What are the pros and cons of dynamic
programming vs. greedy methods for the knapsack
problem?” www.linkedin.com. Accessed on Nov. 20, 2023.

[58]. T. Pradhan, A. Israni and M. Sharma, "Solving the 0–1
Knapsack problem using Genetic Algorithm and Rough Set
Theory," IEEE International Conference on Advanced
Communications, Control and Computing Technologies,
Ramanathapuram, India, 2014, pp. 1120-1125.

[59]. Florian, “0/1 Knapsack problem,” Medium,
https://medium.com/@florian_algo/0-1-knapsack-problem-
eec333f4a991 (accessed Nov. 30, 2023).

[60]. “0/1 knapsack using branch and bound,” GeeksforGeeks,
https://www.geeksforgeeks.org/0-1-knapsack-using-
branch-and-bound/ (accessed Nov. 30, 2023).

[61]. I.A. Qureshi, K.A. Bhatti, A. Rahman, et al., “GFuCWO: A
genetic fuzzy logic technique to optimize contention
window of IEEE-802.15. 6 WBAN,” Ain Shams
Engineering Journal, 10268, 2024, doi:
10.1016/j.asej.2024.102681.

[62]. M.A. Khan, S. Abbas, A. Atta et al., “Intelligent cloud based
heart disease prediction system empowered with supervised
machine learning,” Computers, Materials & Continua 65 (1),
139-151, 2020.

[63]. A Rahman, IM Qureshi, AN Malik, “Adaptive Resource
Allocation in OFDM Systems Using GA and Fuzzy Rule
Base System,” World Applied Sciences Journal 18 (6), 836-
844, 2021.

[64]. S Dash, BK Tripathy, A Rahman, “Handbook of Research
on Modeling, Analysis, and Application of Nature-Inspired
Metaheuristic Algorithms,” IGI Global 1, 540, 2017.

[65]. M. T. Naseem, I. M. Qureshi, A. Rahman and M. Z.
Muzaffar, "Robust watermarking for medical images
resistant to geometric attacks," in Proc. INMIC, Islamabad,
Pakistan, 2012, pp. 224-228.

