
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.1, January 2024

45

Manuscript received January 5, 2024
Manuscript revised January 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.1.6

A Parallel Algorithm for Finding Routes in Cities with Diagonal
Streets

Hatem M. El-Boghdadi

Faculty of Computer & Information Systems, Islamic University of Madinah, Saudi Arabia

Summary
The subject of navigation has drawn a large interest in the last few
years. The navigation within a city is to find the path between two
points, source location and destination location. In many cities,
solving the routing problem is very essential as to find the route
between different locations (starting location (source) and an
ending location (destination)) in a fast and efficient way. This
paper considers streets with diagonal streets. Such streets pose a
problem in determining the directions of the route to be followed.
The paper presents a solution for the path planning using the
reconfigurable mesh (R-Mesh). R-Mesh is a parallel platform that
has very fast solutions to many problems and can be deployed in
moving vehicles and moving robots. This paper presents a solution
that is very fast in computing the routes.
Keywords:
Path planning, parallel computation, branching streets.

1. Introduction

The navigation problem in smart cities is an
important problem because of its applications. The
path planning problem (navigation) is to find the path
between two locations, a source and a destination.

Navigation systems guide people to move easily
among different locations. In such case, solutions to
the navigation problem are essential. The navigation
algorithms are the core of navigation systems. In this
paper we consider such algorithms to find a path
between two locations within a map in parallel.

The navigation algorithms that we consider in
this paper depends on maps as inputs to the algorithms.
The idea is to build explicit maps or uses pre-prepared
maps and then planning the route through these maps
[12]. The map contains all available routes and its
directions and could be for the whole city or certain
geographical area of the city (see Figure 1 for an
example of a map).
In [6], we presented algorithms to deal with
perpendicular streets. In this paper we extend this
work and consider maps that contains diagonal streets
and follow the same lines as in [6].

Figure 1. A map of a certain geographical area

containing diagonal streets

We use the Reconfigurable Mesh (R-Mesh), to
compute the path from source location to destination

Location. Platforms such as the R-Mesh [2,3] (shown
in Figure 2) have the ability to change the
interconnection between processors dynamically at
every step of the computation to allow efficient
communication as well as to perform computation
faster than conventional non-reconfigurable platforms.
A 2D R-Mesh is an array of processors that are
connected with fixed connections between each two
neighboring processors. Also, each processor has
internal connections that can be dynamically
reconfigured. This allows altering the interconnection
among processors very fast, possibly at each step of
the computation.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.1, January 2024

46

N

S

EW

(a)

(b)

 column 0 1 2 3 4

row 0

1

2

Figure 2. (a) Example of buses in a 3 5 R-Mesh
(b) Processor ports

Each processor can independently set (partition)

its ports to connect certain ports together at each step
of the computation. For example, in Figure 2(a) the top
left processor connects its N port to its S port, and its
E port to its W port. The corresponding partition is
denoted by ሼ𝑁𝑆തതതത, 𝐸𝑊തതതതതሽ . Figure 2(a) shows the fifteen
possible port partitions of the R-Mesh.

A certain setting for a port partition to each R-
Mesh processor is called a configuration (see Figure
2(b) for a possible configuration). The port partitions
along with the underlying mesh connections between
neighboring processors form buses connecting
processors (see Figure 2(a) for buses formed in a
certain step).

At each step of an R-Mesh algorithm [2,3], a
processor could perform the following actions: (1)
configure (partition) its ports, (2) read from or write to
its ports, and (3) perform a local computation. An R-
Mesh could permit concurrent reads and writes.
Researchers have used R-Mesh to design fast and
efficient algorithms in image processing, computer
vision, arithmetic problems, graph problems, etc. [2,3].
In this paper, we consider the design of parallel
algorithms for the navigation problem on R-Mesh. We
consider maps with diagonal as well as perpendicular
streets. The we analyze the proposed algorithm with
respect to running time and the quality of the path.

The next section presents the related work. In
section 3, we show the overall system architecture
assumed in this paper. Section 4 presents the path

planning algorithm for maps with diagonal streets.
Finally, in section 5, we make some concluding
remarks.

2. Related Work

The path planning problem has a wide range of
applications. This operation is an essential operation
in many navigation systems [21,22] needed to
navigate through cities such as indoor navigation and
maze solving [17,18].
The navigation problem finds a path from a source
location to a destination location within an
environment. In this paper we solve the navigation
problem using maps for the environment.

The maps are constructed in the exploration stage
[11,12] and then used in the path planning phase to
navigate. The map contains all available routes and its
directions. This proposal follows this approach and
assumes that map is already built in the exploration
stage. Maps contain the available paths to follow as
well as direction of each path.

Reconfigurable platforms such as R-Mesh [2,3]
were used in literature to propose robot path planning
algorithms that aim to plan a path for a moving robot
from a source location to a target location with the
existence of static or dynamic obstacles. The main
input to the algorithm is an image (map) with obstacles.
In this paper we consider maps with available paths
and direction of each path to accommodate the
navigation problem within cities. Adding these
restrictions to the map would add more complexity to
the algorithm. The R-Mesh was also to handle
restrictions on robot movement [2,3].
To simplify the design and analysis of the problem, the
map is used first to generate the configuration space
[8].

Planning for collision-free path was presented by
Tzionas et al. [9] for diamond-shaped robot. The
configuration space was computed optimally on
hypercube in [10]. The algorithm was shown to be
optimal where it requires O(log n) time for an n x n
image by using n x n Mesh of processors. The
reachability problem in one dimensional space was
solved efficiently D. Wang [7].
The maze-routing problem was considered by H.C.
Lee [5]. D. The authors in [4] used disjoint convex or
concave polygons as obstacles. The algorithm uses

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.1, January 2024

47

O(k) time to compute a path from a source to a
destination while avoiding all obstacles in the
environment, where N is the total number of
processors (pixels) and k is the number of obstacles.
However, the algorithm requires O(log2N)
preprocessing time for the given obstacle image.
The authors in [5] proposed O(1) time algorithm to
find a collision free path in the existence of obstacles.
Also, the authors proposed a measure for the quality
of the path that depends on the number of bends in the
path.

All the above algorithms assume an image with
obstacles. Thus, it is available to navigate and avoid
obstacles.

In [6], the authors presented two algorithms to
find the route between a source location and a
destination location using the R-Mesh. They
considered streets with linear streets. In this work we
follow the same lines as in [6] (see Figure 1).

3. System Architecture

We use the same system architecture as in [6].
The proposed system is shown Figure 4. The main
platform for computation is the R-Mesh that takes map

areas as input and generates in parallel the navigation
path.

In this work, we used the R-Mesh platform to
solve the navigation problem. As mentioned before,
one very important advantage is the speed by which
we achieve the path from source location to
destination location. The input to the algorithm is a
map with all routs and its directions. We plan to look
at the speed of the solution as well as the quality of the
generated solution. We consider two types of maps;
maps with linear streets and maps with branching
streets.

4. Algorithm for Diagonal streets

In this section, we present the main algorithm
proposed in this paper to find the route between two
locations using maps with diagonal streets with the
existence of perpendicular streets. Diagonal streets
pose a problem in the sense that they may cause
circular routes. This raises the question of the quality
of the found path. The found path between two
locations might be longer than it is required. We first
start by presenting some known operations on R-Mesh
that will be used later.

 Figure 4. Overall system Architecture [6]

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.1, January 2024

48

Figure 5. Directions of linear streets through a node

4.1 Basic Operations

In this section we show the two main operations
that are performed on the RMesh that will be used in
the proposed algorithms. Namely, Broadcasting Data
and Counting N bits.

The first operation, Broadcasting data, is well
known to be performed in O(1) time [3] on R-Mesh.
This can be done by partitioning all ports as NSEW. If
any processor writes data to one of its ports, data will
reach all other processors. The second basic operation
is Counting N bits, where the operation can be
performed on an N x N R-Mesh in O(1) [3].

Now we describe the proposed algorithm to solve
the navigation problem using maps with diagonal
streets. As in [6], the image of map and streets are
digitized and stored in the R-Mesh, with one processor
holding one pixel of the image. Also, the direction of
each street is stored in each processor. Then each
processor has all the information about all streets
passing through them. Since we consider linear streets,
any processor could have only at most one street with
directions. These directions are shown in Figure 5. As
shown, there are 18 different directions that could pass
through a processor.

4.2 Path Planning Algorithm

__

Assume S (resp. D) be the source node resp.
destination node.
Input. S, D, and all map information
Output. Route from S to D

Step 1 Nodes S and D broadcast their IDs to all processors.

Step 2 Nodes S and D exchange their IDs. If the IDs
 received by the two nodes, then there is a route
 between the two nodes.

Step 3 Let all processors read their own four ports in
 sequence.

Step 4 Node D writes its ID to all of its ports and Node S
 reads its ports. We have the following cases:

 Case 1 If S reads the ID of node D from one of its
 ports, p, then there is a route from the S node to D
 node starting from port p in S node to port y in D
 node.

 Case 2 If S reads ID of node D from more than one
 of its ports, then S concludes that there is more than
 one route from S to D.

 Case 3 If S does not read ID of node D from any of
 its ports, then S concludes that there is no route from
 S to D.

Step 5 If a processor reads ID of S and ID of D in Step 2,
then this processor is part of this route from S to D. Let all
such processor record the route number, R, it belongs to.

Step 6 For each found route, let each processor belong
 to the route cut the bus and exchange ID with
 neighboring nodes along the route.

Now we describe the Algorithm in details. Step 1
broadcasts the IDs for S node and D nodes to all nodes
in RMesh. Thus, all processors have information about
the S and D nodes. In Step 2, S and D nodes exchange
their IDs using the configuration of processors

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.1, January 2024

49

according to streets passing through it. This allows to
send information along the streets according to the
actual map. In Step 3, processors read their ports in
sequence and each processor decide whether they
belong to the route from S to D or not.

Since all streets are linear, then at most there
could be four different routes from S node to D node.
Step 4 checks how many routes are there from S to D
(if any). We have three cases as shown in the
algorithm.

All processors read their ports in sequence in
Step 5.
Finally, in Step 6, to reach from S node to D node, for
each found route, let each processor belong to the
route cut the bus and exchange ID with neighboring
nodes along the route. Now each processor knows its
successor and predecessor.

Time Analysis

Here, we show the time analysis of the algorithm.

Step 1 uses one of the basic operations shown in
section 4.1 which runs in O(1) time.

Step 2 performs local port partitioning which requires
constant time.

In Step 3, processors read their ports in sequence.
Since we have four ports, then this step requires at
most O(1).

In Step 4, various processors either write to a port or
read from a port. Both operations runs in O(1) time.

In Steps 5 and 6, various processors either write to a
port or read from a port. Both operations run in O(1)
time.

Thus, the whole algorithm runs in O(1) time.

Theorem 1 For a map with diagonal streets, an NxN
R-Mesh can compute the route from a source node to
a destination node in O(1) time. ■

As in reference [6], since all the steps of the
algorithm requires linear partitions, then the algorithm
can run on the linear RMesh (LR Mesh). Only Step 1
requires {NSEW} to broadcast data in constant time.

This step can be done also on the LR-Mesh in constant
time and we have the following result.

Theorem 2 For a map with diagonal streets, an NxN
LR-Mesh can compute the route from a Source node
to a destination node in O(1) time. ■

Length of the route

Here we measure the length of the route from
source node to destination node in terms of the number
of processors the route snakes. As in [6], we first, form
a list of all processors belonging to the route in the
same row. Then, count the number of processors in
each row in sequence in O(1) time. For N rows, the
total time required to count all processors in all rows
belonging to the route is O(N) and we have the
following result.

Lemma 3 The number of processors belonging to the
route from source node to destination node can be
computed using N x N R-Mesh in O(N) time. ■

If we use an N x N2 R-Mesh, then we can count the
total number of processors belonging to the same route
in O(1) time.

Lemma 4 The number of processors belonging to the
route from source node to destination node can be
computed using N x N2 R-Mesh (or LR-Mesh) in O(1)
time. ■

Also the length of the route could be measured in the
number of turns in the route.

Counting the Number of Turns

We can follow similar procedure as the one followed
in measuring the length of the route as follows. First
we flag each processor with 1 if it has a turn in the
route. Then, in each row we form a list with all flagged
processors. Finally, we count all flagged processors in
the R-Mesh. Thus, we have the following results:

Lemma 5 The number of turns from S node to D node
can be counted using N x N2 R-Mesh (or LR-Mesh) in
O(1) time. ■

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.1, January 2024

50

5. Conclusion

In this paper, we have presented the navigation
problem and proposed a solution for the maps with
diagonal streets, and the use of R-Mesh to solve the
problem. Our analysis shows that the algorithm runs
in O(1) time. We also showed the computation of the
length of the route and the number of turns in the path.

Future directions include using other parallel
platforms. Also, more restrictions on the maps and
streets could be considered.

References

[1] Jaja J, An introduction to parallel algorithms.

Addison Wesley, Redwood City, CA, USA, 1992.

[2] Bondalapati K, Prasanna VK. Reconfigurable

computing: architectures, models and algorithms.
Curr Sci 78:828–837, 2009.

[3] R. Vaidyanathan and J. L. Trahan, Dynamic

Reconfiguration: Architectures and Algorithms
(Kluwer Academic/Plenum Publishers), 2004.

[4] D. Wang, A linear-time algorithm for computing

collision-free path on reconfigurable mesh, J.
Parallel Comput. 34, 487–496, 2008.

[5] Hatem M. El-Boghdadi. Constant Time Algorithm

for Computing a Collision-Free Path on R-Mesh
with Path Quality Analysis. Journal of Circuits,
Systems, and Computers 24(8): 1550112:1-
1550112:20. 2015.

[6] Hatem M. El-Boghdadi and Fazal Noor. A Parallel

Approach to Navigation in Cities using
Reconfigurable Mesh. IJCSNS International
Journal of Computer Science and Network
Security, VOL.21 No.4, April 2021

[7]H.-C. Lee, Effecient parallel algorithms on

recon¯gurable mesh architectures, Ph.D.
Dissertation, University of Missouri-Rolla, 1996.
<http://www.mis.yzu.edu.tw/faculty/
hlee/csdiss/>.

[8] D. Wang, Two algorithms for a reachability
problem in one-dimensional space, IEEE Trans.
Syst., Man, Cybern. 28, 1998.

[9] F. Dehne, A. Hassenklover and J. Sack, Computing

the con¯guration space for a robot on a mesh-of-
processors, Proc. 1989 ICPP 3, 40–47 1989.

[10] P. Tzionas, A. Thanailakis and P. Tsalides,

Collision-free path planning for a
diamondshaped robot using two dimensional
cellular automata, IEEE Trans. Robot. Automat.
13, 237–250, 1997.

[11] J. Jenq and W. Li, Computing the configuration

space for a convex Robot on hypercube
multiprocessors, Proc. 7th IEEE Symp. Parallel
and Distributed Processing, pp. 160–167, 1995.
ss

[12] Michael Hoy, Alexey S. Matveev and Andrey V.
Savkin. Algorithms for collision-free navigation
of mobile robots in complex cluttered
environments: a survey. Robotica, volume 33, pp.
463–497, 2015.

[13] Otte, M.W. A Survey of Machine Learning
Approaches to Robotic Path-Planning. 2009.

[14] Jeffrey Donahue, Lisa Anne Hendricks, Sergio

Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, KateSaenko, andTrevorDarrell.
Long-term recurrent convolutional networks for
visual recognition and description. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2625–2634,
2015.

[15] Mateusz Malinowski, Marcus Rohrbach, and

Mario Fritz. Ask your neurons: A deep learning
approach to visual question answering.
International Journal of Computer Vision,125(1-
3):110– 135, 2017.

[16] Rodrigo F Berriel, Lucas Tabelini Torres,

Vinicius B Cardoso, Rânik Guidolini, Claudine
Badue, Alberto F De Souza, and Thiago Oliveira-
Santos. Heading direction estimation using deep
learning with automatic large-scale data
acquisition. 2018.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.1, January 2024

51

[17] Aditya Khosla, Byoungkwon An An, Joseph J
Lim, and Antonio Torralba. Looking beyond the
visible scene. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pages 3710–3717, 2014.

[18] Guillaume Lample and Devendra Singh Chaplot.

Playing FPS games with deep reinforcement
learning. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence,
2017.

[19] Piotr Mirowski, Razvan Pascanu, Fabio Viola,

Hubert Soyer, Andrew Ballard, Andrea Banino,
Misha Denil, Ross Goroshin, Laurent Sifre,
Koray Kavukcuoglu, Dharshan Kumaran, and
Raia Hadsell. Learning to navigate in complex
environments. arXiv preprint arXiv:1611.03673,
2016.

[20] Yi Wu, Yuxin Wu, Georgia Gkioxari, and

Yuandong Tian. Building generalizable agents
with a realistic and rich 3d environment. arXiv
preprint arXiv:1801.02209, 2019.

[21] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve,

Joseph J. Lim, Abhinav Gupta, Li Fei-Fei, and
Ali Farhadi. Target-driven visual navigation in
indoor scenes using deep reinforcement learning.
In 2017 IEEE International Conference on
Robotics and Automation, ICRA, pages 3357–
3364, 2017.

[22] Michael J Milford, Gordon F Wyeth, and David

Prasser. Ratslam: a hippocampal model for
simultaneous localization and mapping. In
Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference
on, volume 1, pages 403–408. IEEE, 2004.

